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e Goal:

* To discuss the history of cognitive psychology and
introduce key ideas in how it is studied

* |deas:
* Behaviourism as a response to introspection
* Key ideas in behaviourism (methodological & radical)

* Cognitive revolution as a response to behaviourism
* Methods for measuring cognition

* The “computational metaphor” views cognition as
“information processing”’ (does not say mind = laptop!)

* Marr’s levels of analysis



Lecture 2: Attention
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e Goal:

* To discuss different “kinds” of attention, with a focus on
results in auditory & visual attention, and visual search

* |deas:

* Definitions for different kinds of attention (how many
targets, what kind of target, how is attention controlled)

* Audition: cocktail party problem & early vs late selection
* Visual analogs (e.g., negative priming vs semantic
interference)

* Visual search: serial search vs parallel search, pop-out
effects, feature integration theory & illusory conjunction




Lecture 3: Similarity




e Goal:

* What is similarity and what is it good for?

* |deas:

* The “snowflake problem” means we need similarity
* How to measure similarity

Links between similarity, generalisation & categorisation
Geometric theory of similarity & Shepard’s law

Featural theory of similarity & explanation of asymmetry
* Structural alignment & the MIPs vs MOP:s effect

* Transformational similarity & explanation of asymmetry
(+ experimental evidence)



Lecture 4: Reasoning




e Goal:

* How do people reason and evaluate arguments?

* |deas:
* Difference between induction and deduction
* Valid vs invalid arguments: MP, MT, DA, DC
* Wason selection task (plus the “deontic” version of it)

* Inductive phenomena: premise-conclusion similarity,
premise diversity, premise monotonicity

* Fallacies: argument from ignorance depends on epistemic
closure; circular arguments appeal to explanatory
systems and depend on the strength of the alternative




Lecture 5:The case study
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e Goal:

* Link the previous lectures: show how reasoning uses
similarity, attention & social cognition

* |deas:

* Similarity calls attention to a target category, which
drives the premise non-monotonicity effect

* Explanation: People use similarity to make persuasive
arguments, so this makes sense

* Prediction: helpful person -> non-monotonicity;
unhelpful world -> monotonicity

* Experiment: Manipulate people’s beliefs about the origin
of the data and show this changes their reasoning




“Could we have some examples
of questions to help us study?”

(besides the quizzes, obviously!)



Lecture |

* What is the difference between...

* ... perception and cognition!?

* ... theoretical and methodological behaviourism!?

* ... behaviourism and cognitivism!?

* ... computational, algorithmic & implementation levels?

* What methods are used to measure cognition!?

* What is the computational metaphor?

* Why do we use the computational metaphor?

* |s the computational metaphor consistent with
behaviourism?



Lecture 2

* Can you explain the different “kinds of attention™?
* What do we learn from “shadowing tasks™?

* What is the difference between early and late
selection theories?

* Why does reaction time increase with “set size” for
serial search but stay flat for “parallel search™?

* What kind of visual searches can we do in parallel?

* How does feature integration theory explain these
illusory conjunctions!?



Lecture 3

* Why does cognition rely on similarity?

* Explain the difference between ...
* ... geometric and featural theories
* ... structural alignment and transformational theories

* Describe different ways to measure similarity?

* What does “the universal law of generalisation” say!?
* What’s the difference between MIPs and MOPs?

* Why is the similarity from A to B not always the
same as the similarity from B to A?

* Do different theories explain this differently?




Lecture 4

* How are induction and deduction different?
* What is the meaning of “modus ponens”, etc!?

* |s deductive reasoning always equally easy/hard?
* ... does argument structure matter (e.g., MP, MT)

e ... does it matter if we use an “indicative’” or “deontic”
conditional? Why?

* Describe the “premise monotonicity” effect
* When is an argument from ignorance acceptable?

* When is a circular argument more acceptable to
people!?



Lecture 5

* How do similarity & attention relate to reasoning?
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ny do we think social cognition plays a role?
hat does this mean for (non)monotonicity?
nat were the experimental manipulations!?
nat was the dependent variable!?

nat were the results of the study?

hat can be concluded from it!?

nat are the limitations of the study?



The relationship
between reaction
time and stimulus
transformations
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Transform(A —B) = 2 steps

copy stretch
Many transformations
= very DISSIMILAR

= EASY to distinguish
A B = FAST (small) reaction time

Transform(B — A) = | step

- Few transformations
delete = very SIMILAR
= HARD to distinguish
. = SLOWV (large) reaction time
B A




The four deductive
reasoning scenarios

(MP, MT, DA, AQ)




Valid arguments:

(1) Modus ponens is when you “affirm the antecedent”....

If today is a Thursday, then it is a weekday

Today is a Thursday

Therefore today is a weekday

’”»

(2) Modus tollens is when you “deny the consequent”....

If today is a Thursday, then it is a weekday
Today is NOT a weekday

Therefore today is not Thursday




Invalid arguments:

(3) Affirmation of the consequent...

If today is a Monday, then it is a weekday

Today is a weekday

Therefore today is Monday

(4) Denial of the antecedent...

, then it is a weekday

Therefore today is not a weekday




Premise
monotonicity vs
premise non-
monotonicity




Here is a colour | like Do | like this colour?

Maybe??? Purple and red are a little bit similar
so it’s possible but hard to say for sure



Here is a colour | like

Do | like this colour?

| like all the colours!?

”»

Adding more examples of “things | like
increases your belief that | like “red”

PREMISE MONOTONICITY



Here is a colour | like Do | like this colour?




Here is a colour | like Do | like this colour?

Apparently | only like purple?
. . . Adding more examples of “things | like”
decreases your belief that | like “red”

PREMISE NON-MONOTONICITY




Category sampling
and property
sampling (tutorials)




Some parts of this explanation

go beyond what was in the
tutorials. The new content is

NOT examinable
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"Category sampling"
We selected small birds (e.g., because
they could fit in the cage)

... when we tested them, it turned out that
they all had plaxium blood
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"Property sampling"
We detected plaxium positive
animals (e.g., with a special camera)

... when we examined them, it turned out
that they were all small birds
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| Core prediction
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Does it work?
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® 2 sampling types
® 2 evidence types
® 6 test points

Tost Ssmulus

® 2 sampling types
® 3 sample sizes
® 7 test points

® 2 sampling types
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Some fancy-pants modelling in which | show off...
BLAH BLAH BLAH... no-one cares ©...

model {

# moan and covariance matrix defining the Gaussian process
for(4 in l:ncat) {

‘mean_gp(i] <-m
ST e e ey
+1):
cov_gp(i,]) <~ (tau®2) ¢ np(-cho * (test[i] - test[3])"2) process pfior

y cov_gpl3,i) <~ cov_gp(i.i] \I—I/
'—,

Classification
function
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“Do computational
models in cognitive
science and
neuroscience really
help us build
intelligent
machines?

(surprisingly, yes!)



Hm... | wonder what Google
are up to these days!?

™ DeepMind

Solve intelligence. Use it

to make the world a better
place.




Oh, okay, teaching machines to play Atari
games using... reinforcement learning

Better than human-level control of classic Atari games

through Deep Reinforcement Learning



LETTER

@0 10.1038/nature 14236

Human-level control through deep reinforcement

learning

Volodymyr Mnih'*, Koray Kavukcuoghu'®, David Silver'®, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Adex Graves',
Martin Riedmiller’, Andreas K. Fidjeland’, Georg Ostrovski', Stig Petersen’, Charles Beattic', Amir Sadik', loannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg’ & Demis Hassabis'

The theory of reinforcement learning provides a normative account',
deeply rooted in psychological’ and neuroscientific’ perspectives on
animal behaviour, of how agents may optimize their control of an
environment. To use reinforcement learning succossfully in situations
approaching real world complexity, however, agents are coafronted
with a difficult task: they must derive efficient representations of the
enviroament from high dimensional sensory inputs, and use these
to generalize past experience to new situations. Remarkably, humans
and other animals seem to solve this problem through a harmonlous
combination of reinforcement learning and hierarchical sensory pro-
cessing systems*”’, the former evidenced by a wealth of neural data
revealing notable paraliels between the phasic signals ensittod by dopa-

neurons and temporal difference reinforcement leaming
algorithns’. While reinforcement learning agents have achieved some
successes kn a variety of domains® *, their applicability has previously
been limited to domains in which useful features can be handcrafted,
or to domains with fully observed, low-dimensional state spaces.
Here we use recent advances in training deep neeral networks’ '’ to
develop a movel antificial agent, termed & deep Q-network, that can
leam successful policies directly from high - dimensional sensory inputs
using end-10-end reinforcement learning. We tested this agent on
the challenging domain of classic Atarl 2600 games'’. We demoa-
strate that the deep Q-network agent, receiving only the pivels and
the game score as inputs, was able to surpass the performance of all
previous algorithns and achieve a bevel comparsble to that of a pro-
fessional human games tester across a set of 49 games, using the same
algorithm, network architecture and hyperparameters. This work
bridges the divide between high-dimensional sensory inputs and
actions, resulting in the first artificial agent that is capable of learn-
Ing to excel at a diverse array of challenging tasks.

agent Is to select actions in a fashion that maximizes camulative future
reward. More formally, we use a deep convolutional neural network to
apperoximate the optimal action. value function

Q'(s8)= maxElr, + ey #7004 . w5 4 ma, 3],
which s the maximnum sum of rewards 7, discounted by y at cach tinse
step 1, achievable by a behaviour policy = = P s), after making an
observation (5) and taking an action (a) (see Methods) ™

Reinforcement Jearning is known 1o be unstable or even to diverge
when a nonlinear function approximator such as a neural network is
used 1o represent the action-value (also known as ) function™. This
instability has several causes: the correlations present in the sequence
of observations, the fact thas small updates 10 O may signiicantly change
the policy and therefore change the data distribution, and the correlations
between the action-values () and the target values r + y max (Xs', &),
Weaddress these instabilities with a novel variant of Q-leafning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay” ' that randomizes over the data, thereby
removing correlations in the observation sequence and smoothing over
changes in the data distribution (see below for detalls). Second, we used
an ferative update that adjusts the action-values () towards target
values that are only periodically updated, thereby reducing correlations
with the target.

While other stable methods exist for training neural networks in the
reinforcement learning setting, such as neural fitted Q- fteration™, these
methods involve the repeated training of networks de movo on hundreds
of herations. Consequently, these methods, unltke our algosithm, are
100 inefficient to be used successfully with large neural networks. We
perameterize an approximate value function Q(s.a0) using the deep
convalutional neural network shown in Fig. 1,in which 6, are the param

Better than human-level control of classic Atari games

through Deep Reinforcement Learning.



The theory of reinforcement learning provides
a normative account, deeply rooted in
psychological and neuroscientific perspectives
on animal behaviour, of how agents may
optimize their control of an environment.To
use reinforcement learning successfully in
situations approaching real-world complexity,
however, agents are confronted with a difficult
task: they must derive efficient representations
of the environment from high-dimensional
sensory inputs, and use these to generalize past
experience to new situations

Better than human-level control of classic Atari games

through Deep Reinforcement Learning
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Don’t try to defeat an
Al at space invaders

At human-ievel or above
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You'll do much better
at Ms Pac-Man
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Cognitive science researchers interested in working out why humans
are better than Al at some games, and worse at others...
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Cognitive science researchers interested in working out why humans
are better than Al at some games, and worse at others...

a woman riging a horse on a an airplane Is parked on the a group of people standing on
dirt road tarmac at an airport top of a beach

Figure 6: Perceiving scenes without intuitive physics, intuitive psychology, compositionality, and
causality. Image captions are generated by a deep neural network (Karpathy & Fei-Fei, 2015) using
code from github.com/karpathy/neuraltalk2. Image credits: Gabriel Villena Ferndindez (left),
TVBS Taiwan / Agence France-Presse (middle) and AP Photo / Dave Martin (right). Similar
examples using images from Reuters news can be found at twitter.com/interesting jpg.

http://web.stanford.edu/class/psych209/Readings/LakeEtAIBBS.pdf



Any other
questions???
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Learning, reasoning, induction,
decision making, computational
modelling, statistics
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