How to take a hint: A case study in linking it all together

http://compcogscisydney.org/psyc207l/
Danielle Navarro

A partial list of important topics

attention
sensation
similarity

perception

reasoning

learning

social cognition
decision making

From topics to tasks...

attention

sensation

decision making

Today we'll reverse this

decision making

The case study...

Cognitive Science Explore this journal >

Brief Report

Leaping to Conclusions: Why Premise Relevance Affects Argument Strength

Keith J. Ransom ■, Amy Perfors, Daniel J. Navarro
First published: 16 October 2015 full publicasion Nissory
DOI: $10.1111 / \operatorname{cog} s .12308$ Vima/sme citation
Cited by: 0 articles
© Ctasion tools
(Am)
Funding informasion

Early View

Browse Early View Articles Online Version of Record published before inclusion in an issue

Abstract

Everyday reasoning requires more evidence than raw data alone can provide. We explore the idea that people can go beyond this data by reasoning about how the data was sampled. This idea is investigated through an examination of premise non-monotonicity, in which adding premises to a category-based argument weakens rather than strengthens it. Relevance theories explain this phenomenon in terms of people's sensitivity to the relationships among premise items. We show that a Bayesian model of category-based induction taking premise sampling assumptions and category similarity into account complements such theories and yields two important predictions: First, that sensitivity to premise relationships can be violated by inducing a weak sampling assumption; and second, that premise monotonicity should be restored as a result. We test these predictions with an experiment that manipulates people's assumptions in this regard, showing that
 people draw qualitatively different conclusions in each case.

The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' but 'That's funny...'

- Isaac Asimov

Premise monotonicity

Dolphin cells contain TH4 hormone Therefore cow cells contain TH4 hormone?

Adding evidence usually strengthens an inductive argument

Premise non-monotonicity

Dolphin cells contain TH4 hormone Therefore cow cells contain TH4 hormone?

Dolphin cells contain TH4 hormone
Whale cells contain TH4 hormone
Seal cells contain TH4 hormone
Therefore cow cells contain TH4 hormone?
Sometimes adding evidence weakens an argument?

But whyyyyyy?

A tale of similarity, attention and social cognition

Observation \#I: Similarity shapes reasoning

Similarity is relevant to reasoning

Dolphins and cows are dissimilar.

So this feels unreasonable

Similarity is relevant to reasoning

Bats and mice are very to dissimilar cows too, but they're also dissimilar to dolphins.

Suggests the TH4 hormone is common?
... so the argument gets stronger

Similarity is relevant to reasoning

Seals and whales are very dissimilar to cows too, but they are very similar to dolphins and to each other.

Suggests that TH4 is possessed by a narrow range of animals that does not include cows.
... so the argument gets weaker

Similarity is relevant to reasoning

If the conclusion item (dugong) is "sufficiently similar" to the premise items then monotonicity is restored
... this is also a strong argument

Observation \#2:
 Similarity directs attention* to a particular category

... marine mammals?
... intelligent animals?
... mammals?
... cute?

Many possible categories that could indicate which animals have TH4 and which don't

Adding bats and mice calls attention to mammal

Adding whales and seals calls attention to marine mammal

... marine mammals?
... intelligent animals?
... mammals?
... cute?
Notice: seals and whales are also intelligent cute mammals.These possibilities aren't ruled out, we just ignore them

A scientific question...

Why does this similarity-driven attention influence our reasoning?

On the origins of data

Information from the world

Humans are intelligent agents with complex goals and a rich language. We "transmit" information to each other via a complicated mechanism... persuasion

How does this communication work?

If I choose these similar animals...

And you know that I know. You know I wanted you to think of a particular category ... so you can "take a hint"

Theory of mind!

We have intuitive theories about the workings of each other's minds, so we can select relevant information that drives attention to the right answer

So humans do this...

"I've studied TH4 hormone for many years... and I have discovered it in the cells of whales, seals and dolphins.

I want you to believe that dugongs will produce TH4 hormone"

And we do this...

"l've studied TH4 hormone for many years... and I have discovered it in the cells of mice, bats and dolphins.

I want you to believe that cows will produce TH4 hormone"

We don't do this:

"l've studied TH4 hormone for many years... and I have discovered it in the cells of whales, seals and dolphins.

I want you to believe that kittens will produce TH4 hormone"

Okay, so how does this other mechanism work?

The world is dumb. It does not care what you believe. It does not give "hints"

You know that it does not care what you believe. You do not expect the world to behave like an intelligent or helpful agent.

The world doesn't care what you believe, and it doesn't try to influence you: it's just a big dumb rock

Other humans do care what you believe, and they do try to shape your beliefs by choosing the right words

Do I reason differently in these two situations?

(\& can this explain non-monotonic reasoning?)
(\& if so, is that the right thing to do?)

To the laboratory!

The reasoning task

Item A has property P

Item X has property P

How likely is it that item X has property P ?
0\% 25\% 50\% 75\% I00\%

Participants are first asked to rate an
inductive argument with a single premise

The reasoning task

A second item is added and they are asked to revise their estimate

Argument lb

| \rightarrow Item A has property P |
| :--- | :--- |
| Item B has property P |

Argument la
$\rightarrow \rightarrow$ Item A has property P

DV is the difference score

Argument lb

Argument la

>0 : premise
monotonicity

Response b minus response a

0 : no change
<0 : premise non-
monotonicity

Our hypothesis

When an indifferent world generates random data, the similarity between premise items will be deemed irrelevant, and people will revert to premise monotonicity

When a helpful human makes an argument, the similarity between premise items will be deemed relevant, and the premise non-monotonicity effect will appear

Manipulated variable \downarrow

Okay... but how do we manipulate people's beliefs???

Problem: an experiment is designed by an experimenter....

"Cover story" manipulation

(independent variable \#I)

> What do we tell people about the origin of the second premise?

- Relevant story: It is a hint from a previous participant
- Neutrall story: Don't tell them where it comes from
- Random story: It is chosen at random from a database

"Experience" manipulation

(independent variable \#2)

> What do we show people about the nature of the second premise?

- Relevant data: Previous examples have been helpful
- Random data: Previous examples have been stupid

"Flow" of the experiment

Cover story manipulation appears here:

The "a" arguments have one premise; when the second premise is added to create the "b" argument, we "remind" the participants that the data [is a hint / ??? / is random]

Each participant is shown 6 of these argument pairs

The experience manipulation appears here: the $1^{\mathrm{st}}, 2^{\text {nd }}$ and $4^{\text {th }}$ arguments were "filler" items designed to highlight the [relevance / randomness] of the second premise

Arg la

Arg lb

"Filler"

This suggests the involvement of a helpful human because hawks seem relevant to the context

Eagles have multiple foveas
Doves have multiple foveas

Eagles have multiple foveas Tortoises do not have multiple foveas

Doves have multiple foveas

This is the worst hint ever. Why would anyone think tortoises are relevant? Clearly, the second premise is randomly chosen

Incomplete 2×3 design

Experience

Story	Relevant story, Relevant items
	Neutral story, Relevant items
	Neutral story, Random items
	Random story, Random items

Incomplete 2×3 design

Experience

Story	Relevant story, Relevant items
	Neutral story, Relevant items
	Neutral story, Random items
	Random story, Random items

QI: Why not 3×3 ? Where are the "neutral items" conditions? Q2: Why is it incomplete? Why did we leave two empty cells here?

Now, how should we measure the effect?

We used these three arguments for the IV

For target items the second premise was similar to the first premise item but not the conclusion

For target items the second premise was similar to the first premise item but not the conclusion

For target items the second premise was similar to the first premise item but not the conclusion

If this similarity is deemed relevant... it strongly suggests TH-L2 is a property of bears so the extra evidence weakens the conclusion... non monotonicity

For target items the second premise was similar to the first premise item but not the conclusion

If this similarity is deemed irrelevant because the data are random ... the extra "evidence" is almost useless

So we expect no difference or a weak monotonicity effect because at least there's some extra evidence that TH-L2 is not rare

For the control item the second premise was similar to the first premise and the conclusion

For the control item the second premise was similar to the first premise and the conclusion

For the control item the second premise was similar to the first premise and the conclusion

If similarity is considered relevant, it calls attention to "primates", but this is the intuitively obvious answer anyway. So it really doesn't make a difference:

What we expect to see if our theory is right

Dependent variable is the difference score...

Target arguments should show a systematic change when we manipulate the perceived origin of the data...

Control argument should produce premise monotonicity under all conditions

Relevant story +
Relevant experience

Random story + Random experience

>0: premise monotonicity
<0 : premise non-
monotonicity

What we expect to see if our theory is wrong

If similarity always drives attention and reasoning in the same way, the IVs should make no difference...
>0 : premise monotonicity
<0 : premise non-
monotonicity

If similarity always drives attention and reasoning in the same way, the IVs should make no difference...

What we expect to see if our experiment is total garbage

If we made some weird mistake, the data should show no meaningful patterns
>0 : premise monotonicity
<0 : premise non-
monotonicity

What were our results?

Premise

monotonicity

Premise non-
monotonicity

Premise monotonicity

Control

Neutral story +
Relevant experience

Premise non-

 monotonicityThe control argument produces monotonic reasoning in all four conditions

Premise
monotonicity

Random story +
Random experience
Neutral story + Random experience

Relevant experience

[^0]

What does it mean?

We used a psychological theory to help us design an experiment

Data are random

Data are relevant

Humans:

Call back to lecture I... we can get a more precise test using a computational model

People are smart (\& psychology is hard)

We switch flexibly between these in a sensible way - and the inductive power of an argument changes when we do so.

What are the limitations?

Possible limitations?

- Sample size too small?
- Sample not representative?
- Stimulus order not randomised?
- Factors not fully crossed?
- Limited range of arguments?
- Limited range of phenomena?
- Sample size too small?
- Sample not representative?
- Stimulus order not randomised?
- Factors not fully crossed?
- Limited range of arguments?
- Limited range of phenomena?

Probably not. We collected data from 538 participants

- Sample size too small?
- Sample not representative?
- Stimulus order not randomised?
- Factors not fully crossed?
- Limited range of arguments?
- Limited range of phenomena?

Maybe? Our participants were recruited online: diverse in age and gender, but narrow in nationality (USA) and probably above average in education

Important question: is there a plausible reason to think this might matter?

- Sample size too small?
- Sample not representative?
- Stimulus order not randomised?
- Factors not fully crossed?
- Limited range of arguments?
- Limited range of phenomena?

Probably not.

The non random ordering (i.e., fillers mostly first) was intentional, and was central to the
experimental manipulation

- Sample size too small?
- Sample not representative?
- Stimulus order not randomised?
- Factors not fully crossed?
- Limited range of arguments?
- Limited range of phenomena?

Absolutely not. It would have been absurd to include a "relevant story + random experience" condition... this would introduce a confound colloquially referred to as "lying to participants"

- Sample size too small?
- Sample not representative?
- Stimulus order not randomised?
- Factors not fully crossed?
- Limited range of arguments?

Definitely a limitation. We used a fixed set of six arguments, all of which were about animals.

Important question: why might this matter? (hint... people have different knowledge)

- Sample size too small?
- Sample not representative?
- Stimulus order not randomised?
- Factors not fully crossed?
- Limited range of arguments?
- Limited range of phenomena?

Definitely a limitation.
We only looked at the premise (non) monotonicity effect.

There are good reasons to think the same manipulations should influence other inductive phenomena

Final thoughts?

A "single" task often requires psychologists to think about several different aspects of human cognition
attention
similarity

Using psychological theories to guide experimental design yields insight into how cognition works

A "single" task often requires psychologists to think about several different aspects of human cognition

Using psychological theories to guide experimental design yields insight into how cognition works

Human reasoning (and cognition generally) can be remarkably complicated

A "single" task often requires psychologists to think about several different aspects of human cognition

Using psychological theories to guide experimental design yields insight into how cognition works

Human reasoning (and cognition generally) can be remarkably complicated
... which is one of the reasons we build models

[^0]: monotonicity Relevant experience
 Premise non-
 Relevant story +

