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Assume that the learner currently has a set of n perceptual observations
that are available to guide the decision-making. In Lecture 8 we denoted these
observations vA and vB, to indicate that these correspond to actual sensory
“samples” of the stimuli A and B. However, for the sake of simplicity, I’ll let
v = (vA,xB) denote the complete set of data; similarly vi = (vAi, vBi

) from the
original notation. Along much the same lines, I’ll truncate the notation associ-
ated with the decision: instead of writing A > B, I’ll just write A, indicating
that the decision-maker chooses option A.

Bayes’ theorem states that the probability that the correct answer is A can
be given as:

P (A|v) =
P (v|A)P (A)

P (v)
. (1)

Therefore, the posterior odds ratio comparing the relative plausibility of A and
B is given by

P (A|v)

P (B|v)
=

P (v|A)

P (v|B)
×

P (A)

P (B)
(2)

If we assume that the vi values are approximately conditionally independent,
then this becomes

P (A|v)

P (B|v)
≈

n∏

i=1

P (vi|A)

P (vi|B)
×

P (A)

P (B)
(3)

Taking logarithms gives us:

ln
P (A|v)

P (B|v)
≈

n∑

i=1

ln
P (vi|A)

P (vi|B)
+ ln

P (A)

P (B)
. (4)

We now define the log-odds on the LHS to be xn,

xn = ln
P (A|v)

P (B|v)
(5)

and each of the log-odds terms on the RHS to be one of the yi values:

yi = ln
P (vi|A)

P (vi|B)
(6)
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y0 = ln
P (A)

P (B)
(7)

If we substitute these new variables back into Eq. 4, then we get the additive
expression:

xn =
n∑

i=0

yi (8)

At this point, it helps to recall that we are thinking about observations that
arrive over time. So it is convenient to switch subscripts now, using t instead of
n.

xt =

t∑

i=0

yi (9)

= yt +

t−1∑

i=0

yi (10)

= yt + xt−1 (11)

Thus, when data arrive over time, we can characterise the Bayesian updating
process via this very simple difference equation. Now, recall from the slides in
Lecture 7, we stated that our goal was to continue sampling until the probability
of making an error is sufficiently low. If this error tolerance is ǫ, we either want
it to be the case that P (A|v) < ǫ or P (B|v) < ǫ. Since this is a two-choice
problem, P (B|v) = 1 − P (A|v), so we can restate our goal as follows. We
continue to sample, as long as

ǫ < P (A|v) < 1− ǫ (12)

At this stage, it would be nice to figure out what this means for xt. Note that:

xt = ln
P (A|v)

P (B|v)
(13)

exp(xt) =
P (A|v)

1− P (A|v)
(14)

exp(−xt) =
1− P (A|v)

P (A|v)
(15)

1 + exp(−xt) =
1

P (A|v)
(16)

1

1 + exp(−xt)
= P (A|v) (17)

so we can rewrite Eq 12 as

ǫ <
1

1 + exp(−xt)
< 1− ǫ (18)
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Now, we can apply the reverse trick:

1

1 + exp(−xt)
> ǫ (19)

1 + exp(−xt) <
1

ǫ
(20)

exp(−xt) <
1− ǫ

ǫ
(21)

exp(xt) >
ǫ

1− ǫ
(22)

xt > ln
ǫ

1− ǫ
(23)

We now define
γ = ln

ǫ

1− ǫ
(24)

which means that we can now restate Eq. 18 as follows: continue to sample until

|xt| < γ (25)

where | · | denotes the absolute value function. Thus, the sampling algorithm is

set t = 0
set x0 to reflect prior beliefs

while |xt| < γ

time increments: t = t+ 1
draw new observation: vt
calculate the associated log-odds: yt
update beliefs: xt = xt−1 + yt

make decision (at time t):

if xt ≥ γ, choose A

if xt ≤ −γ, choose B
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