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Abstract

This note provides a discussion of the Metropolis-Hastings algorithm. If
anything the notes doesn’t make sense please contact me (these notes were
written by Dan: daniel.navarro@adelaide.edu.au) and I’ll try to fix them!

The problem to be solved

The Metropolis-Hastings algorithm is the most popular example of a Markov chain

Monte Carlo (MCMC) method. The basic problem that it solves is to provide a method for
sampling from some generic distribution, P (x). The idea is that in many cases, you know
how to write out the equation for the probability P (x), but you don’t know how to generate
a random number from this distribution, x ∼ P (x). This is the situation where MCMC is
handy. In fact, for the Metropolis-Hastings algorithm we don’t even need to know how to
calculate P (x) completely. For example, suppose I’ve become interested in the distribution
shown in Figure 1. This distribution is given by:

P (x) =
exp(−x2)(2 + sin(5x) + sin(2x))

∫∞
−∞ exp(−x′2)(2 + sin(5x′) + sin(2x′)) dx′

(1)

My problem is that I either don’t know how to solve the integral in the denominator, or
I’m just too lazy to try. So this means in truth, I only know the distribution up to some
constant. That is, I know that:

P (x) ∝ exp(−x2)(2 + sin(5x) + sin(2x)) (2)

How can I generate samples from this distribution?

The Metropolis-Hastings algorithm

The basic idea behind MCMC is very simple. The idea is to define a Markov chain
over possible x values, in such a way that the stationary distribution of the Markov chain is
in fact P (x). That is, what we’re going to do is use a Markov chain to generate a sequence
of x values, denoted (x0, x1, x2, . . .), in such a way that as n → ∞, we can guarantee that
xn ∼ P (x). There are many different ways of setting up a Markov chain that has this
property, one of which is the Metropolis-Hastings algorithm.
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Figure 1. The distribution from which I want to draw samples.

Here’s how it works. Suppose that the current state of the Markov chain is xn, and
we want to generate xn+1. In the Metropolis-Hastings algorithm, the generation of xn+1 is
a two-stage process. The first stage is to generate a candidate, which we’ll denote x∗. The
value of x∗ is generated from the proposal distribution, denoted Q(x∗|xn), which depends
on the current state of the Markov chain, xn. There’s a few minor technical constraints on
what you can use as a proposal distribution, but for the most part it can be anything you
like. A very typical way to do this is to use a normal distribution centred on the current
state xn. That is,

x∗|xn ∼ Normal(xn, σ
2) (3)

for some standard deviation σ that the user needs to specify.
The second stage is the accept-reject step. Firstly, what you need to do is calculate

the acceptance probability A(xn → x∗), which is given by:

A(xn → x∗) = min

(

1,
P (x∗)
P (xn)

× Q(xn|x∗)
Q(x∗|xn)

)

(4)

There are two things to pay attention to here. Firstly, notice that the ratio P (x∗)
P (xn)

doesn’t

depend on the normalising constant for the distribution P (x). That is, the integral in
Equation 1 is completely irrelevant. So, for the toy problem described in the previous
section,

P (x∗)
P (xn)

=
exp(−x∗2)(2 + sin(5x∗) + sin(2x∗))

exp(−xn2)(2 + sin(5xn) + sin(2xn))
(5)

which is simple to compute. The second thing to pay attention to is the behaviour of the
other term, Q(xn|x∗)

Q(x∗|xn)
. What this term does is correct for any biases that the proposal distri-

bution might induce. In this expression, the denominator Q(x∗|xn) describes the probability
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of generating a x∗ as the candidate given that the current state is xn (i.e., what actually hap-
pened), whereas the numerator describes the probability that the “opposite” event would
have occurred: that is, if the current state had actually been x∗, what is the probability
that you would have generated xn as the candidate value? If the proposal distribution
is symmetric, then these two probabilities will turn out to be equal. For example, if the
proposal distribution is a normal, then:

Q(x∗|xn) =
1√
2πσ

exp

(

− 1

2σ2
(xn − x∗)2

)

(6)

Q(xn|x∗) =
1√
2πσ

exp

(

− 1

2σ2
(x∗ − xn)

2
)

(7)

clearly, Q(x∗|xn) = Q(xn|x∗) for all choices of xn and x∗, so the ratio Q(xn|x∗)
Q(x∗|xn)

= 1. This
special case of the Metropolis-Hastings algorithm is called the Metropolis algorithm.

Okay. Having proposed the candidate x∗ and calculated the acceptance probability,
A(xn → x∗), we now either decide to “accept” the candidate (in which case we set xn+1 =
x∗) or we decide to “reject” the candidate (in which case we set xn+1 = xn). To make this
decision, we generate a (uniformly distributed) random number between 0 and 1, denoted
u. Then:

xn+1 =

{

x∗ if u ≤ A(xn → x∗)
xn if u > A(xn → x∗)

(8)

In essence, this is the entirety of the Metropolis-Hastings algorithm! There are quite a
few technical issues that attach to this, and if you’re interested in using the algorithm for
practical purposes I strongly encourage you to do some further reading to make sure you
understand the traps in detail, but for now I’ll just give you some examples of things that
work and things that don’t, to give you a bit of a feel for how it works in practice.

Some Examples

Firstly, let’s have a look at some MATLAB code (Figure 2) implementing the
Metropolis-Hastings algorithm for the toy problem (i.e., sample from the distribution shown
in Figure 1). Notice that in addition to the parameter σ, we also need to specify the total
number of samples that we are intending to draw nsamp, a start point for the chain x0,
and two additional variables burnin and lag that I’ll explain shortly. For the moment,
however, let’s start the chain near the middle of the distribution, but not quite there: we’ll
use x0 = −1. Then, let’s watch what happens to our sampler for three different values of
σ, where we run the sampler for 1000 iterations. In one case, we’ll set the value too low
(σ = .025) and in another we’ll set it too high (σ = 50), but in a third case we’ll get it
about right (σ = 1). The results are shown in Figure 3. For all three values of σ, we have
two plots. The top one shows the true target distribution, along with a histogram showing
the distribution of samples obtained using the Metropolis sampler. The lower panel plots
the actual Markov chain: the sequence of generated values. In the leftmost plots, we see
what happens when we choose a good proposal distribution: the chain shown in the lower
panel moves rapidly across the whole distribution, without getting stuck in any one place
(the acceptance rate here is 47.5%). In the far right panel, we see what happens when the
proposal distribution is too wide: the chain gets stuck in one spot for long periods of time.
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function [X,acc] = MHsimple

% parameters

burnin = 0; % number of burn-in iterations

lag = 1; % iterations between successive samples

nsamp = 1000; % number of samples to draw

sig = 50; % standard deviation of Gaussian proposal

x = -1; % start point

% storage

X = zeros(nsamp,1); % samples drawn from the Markov chain

acc = [0 0]; % vector to track the acceptance rate

% MH routine

for i = 1:burnin

[x,a] = MHstep(x,sig); % iterate chain one time step

acc = acc + [a 1]; % track accept-reject status

end

for i = 1:nsamp

for j = 1:lag

[x,a] = MHstep(x,sig); % iterate chain one time step

acc = acc + [a 1]; % track accept-reject status

end

X(i) = x; % store the i-th sample

end

function [x1,a] = MHstep(x0,sig)

xp = normrnd(x0,sig); % generate candidate from Gaussian

accprob = targetdist(xp) / targetdist(x0); % acceptance probability

u = rand; % uniform random number

if u <= accprob % if accepted

x1 = xp; % new point is the candidate

a = 1; % note the acceptance

else % if rejected

x1 = x0; % new point is the same as the old one

a = 0; % note the rejection

end

function probX = targetdist(x)

probX = exp(-x.^2) .* (2 + sin(x*5) + sin(x*2));

Figure 2. MATLAB code implementing the Metropolis-Hastings algorithm.
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Figure 3. Metropolis samplers for the toy problem, with a good choice of proposal distribution
(σ = 1, left panel), a proposal distribution that is too narrow (σ = .025, middle panel), and a
proposal distribution that is too wide (σ = 50, right panel).

It does manage to make big jumps, covering the whole range, but because the acceptance
rate is so low (2.5%) the distribution is highly irregular. Finally, in the middle panel, if we
set the proposal distribution to be too narrow, the acceptance rate is very high (97.7%) so
the chain doesn’t get stuck in any one spot, but it doesn’t cover a very wide range.

This simple example should give you an intuition for why you need to “play around”
with the choice of proposal distribution. A good proposal distribution can make a huge
difference! However, it’s also important to realise that even if you don’t get it quite right,
you can always solve the problem with brute force. For example, Figure 4 what happens
when you run the same three chains for 50,000 iterations rather than just 1000.

Now, at this point I haven’t really explained what the burnin and lag parameters
are there for. I don’t plan to go into details, but here’s the basic idea. First, let’s think
about the burn-in issue. Suppose you started the sampler at a very bad location. In the
examples that I’ve shown here x0 = −1 is bad, but it’s not too bad. So let’s pick something
nastier: we’ll start at x0 = −3. Also, to make the issue visually obvious, we’ll use a proposal
distribution that is a bit too narrow, say σ = .2. Figure 5 shows 3 runs of this sampler.
As you can see, the sampler spends the first 200 or so iterations slowly moving towards
the main body of the distribution. Once it gets there, the samples start to look okay, but
notice that the histograms are biased towards the left (i.e., towards the bad start location).
A simple way to fix this problem is to let the algorithm run for a while before starting to
collect actual samples. The length of time that you spend doing this is called the burn in

period. To illustrate how it helps, Figure 6 shows what happens when you use a burn in
period of 200 iterations for the same sampler.

Finally, I’ll mention in passing the role played by the lag parameter. In some situa-
tions you can be forced into using a proposal distribution that has a very low acceptance
rate. When that happens, you’re left with an awkward Markov chain that gets stuck in one
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σ = 0.025
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Figure 4. The same three samplers as Figure 3, run for a lot longer.

−2 0 2
0

200

400

600

800

1000

location

ite
ra

tio
n

−2 0 2
0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 d

en
si

ty

σ = 0.2
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σ = 0.2
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Figure 5. An example of what can happen if you don’t have a burn in period, and you happen to
start in a bad location (x0 = −3 in this case). These were the first three chains that I ran: notice
how in two of the three chains there’s a very nasty bias to the left hand side, which is entirely the
“fault” of the first 200 or so iterations.
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Figure 6. The same sampler as Figure 5, but with a 200 iteration burn-in period. Again, these are
the first three chains I ran. The sampler still has the problem that σ = .2 is a bit too narrow, but
the bias caused by the bad start point is now gone.
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Figure 7. A sampler with a very wide proposal distribution (σ = 50) with 1000 samples drawn, at
a lag of 1 (left), 10 (middle) and 100 (right) each.
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location for long periods of time. One thing that people often do in that situation is allow
several iterations of the sampler to elapse in between successive samples. This is the lag

between samples. The effect of this is illustrated in Figure 7.

A Little Warning

The discussion in this note is heavily oversimplified. There are a lot of subtle issues
associated with MCMC methods, and in later years I intend to expand this note to discuss
some of them. However, given that I only had a few hours to write this, I haven’t managed
to do that this time around! For those of you who do want to read up on MCMC methods,
the classic text is the Gilks et al (1996) book, Markov Chain Monte Carlo in Practice.
However, there are a lot of very good books, articles and tutorials out there, many of which
are freely available online. A quick look suggests that the reference list on the Wikipedia
page is pretty decent: http://en.wikipedia.org/wiki/Markov chain Monte Carlo.


