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Abstract

This note provides a detailed discussion of the “beta-binomial model” de-
scribed in lecture 4, and pops up in several places in the lecture series. The
goal is to (a) give you a more comprehensive resource to work from, and
(b) to highlight some of the interesting technical issues that will arise when
you try to build models of your own. Additionally, the notes aim to be self-
contained – very little knowledge of statistics will be assumed. If anything
the notes doesn’t make sense please contact me (these notes were written by
Dan: daniel.navarro@adelaide.edu.au) and I’ll try to fix them!

Introduction

The beta-binomial model (along with the closely-related beta-Bernoulli model) is
probably the simplest interesting Bayesian model. It is tractable, useful for simple situations
(e.g., the coins problem from lecture 4), and is easy to extend to more interesting examples
(e.g., the AI survey problem from lectures 11-13). As such, it forms one of the basic building
blocks for Bayesian modelling in cognitive science as well as other disciplines. This note
describes the model in some detail. Much of this material should be very familiar to you
already, since it is in large part a rehash of basic statistics. However, because of the fact
that it’s such a basic model, it’s not unusual to gloss over some of the details when talking
about the model. This can be quite confusing to people if they happen to be missing one
or two of the key facts. Given that the CCS class is open to students from quite diverse
backgrounds (e.g., we have now discovered that some people know beta functions but not
beta distributions, and others haven’t come across the distinction between probabilities and
probability densities before), we think it may be useful to describe the beta-binomial model
from the beginning.

To introduce the basic model, consider the following situation, which is taken from
Mark Schervish’s excellent 1995 book The Theory of Statistics. Suppose we are flipping
old-fashioned thumbtacks, like the ones shown in Figure 1. When tossed into the air, a
thumbtack can either land on its head (outcome = H), with the point sticking directly
upwards, or it can land on its side (outcome = S), resting on an angle with both the point
and the head on the ground. When flipped, there is some probability P (H) = θ that a tack
will land on its head, and some probability P (S) = 1− θ that it will land on its side. What
we would like is some simple statistical tools that we can use in this situation. In what
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Figure 1. Nine old-fashioned thumbtacks. Five of them have landed on their heads (H), and four
of them are on their sides (S).

follows, we’ll discuss the problem from a Bayesian perspective (rather than an orthodox
frequentist one), so we’ll discuss everything in terms of priors and likelihoods.

Likelihood #1: The Bernoulli distribution

Suppose that we flip a tack n times, and in each case observe whether the tack lands
on its head or on its side. Let xi denote the outcome of the ith flip, such that

xi =

{
1 if the outcome is H; i.e., the tack lands on its head
0 if the outcome is S; i.e., the tack lands on its side

(1)

Across the set of n flips, we have a length-n binary data vector x = (x1, . . . , xn), where
we may say that x ∈ X (n), where X (n) is the set of all possible binary vectors of length n.
In statistics, this set is called the sample space (in this course, we will sometimes also call
it the outcome space or data space). In the Bernoulli distribution, we want to be able to
assign probability to the specific set of observations x that we have made, P (x|θ, n). If we
treat each of the flips as independent events, we can say that:

P (x|θ, n) =
n∏
i=1

P (xi|θ) (2)

Now, from our earlier discussion, we know that

P (xi|θ) =

{
θ if the outcome is H; i.e., if xi = 1

1− θ if the outcome is S; i.e., if xi = 0
(3)

The distribution over the two possible xi values is the Bernoulli distribution. The notation
that we often use to describe this is:

xi|θ ∼ Bernoulli(θ) (4)

If all n observations are independent and identically distributed (iid) Bernoulli variates,
then we can assign probability to the complete data vector x in the obvious way. If we let
k denote the number of times that the tack landed on its head, then

P (x|θ, n) = θk(1− θ)n−k (5)
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Figure 2. Binomial distributions.

This is the Bernoulli distribution, and it is a proper probability distribution since P (x|θ, n)
always lies between 0 and 1, and ∑

x∈X (n)

P (x|θ, n) = 1 (6)

Likelihood #2: The binomial distribution

In the Bernoulli distribution, our concern was with questions like “if I flip a tack
10 times, what is the probability that the result will be HHSHSSHSHH?” However, in many
situations we might be more interested in questions like “if I flip a tack 10 times, what
is the probability that 6 of the outcomes will be heads?” If the question is related to the
number of heads observed (which is conventionally denoted k), rather than the specific set of
outcomes x, then we want to use the binomial distribution, not the Bernoulli distribution.
The notation here is

k|n, θ ∼ Binomial(θ, n) (7)



THE BETA-BINOMIAL MODEL 4

Typically, the number of observations n is a fixed characteristic of the data, so in most
models only θ is treated as a parameter to be learned. Not surprisingly, the binomial
distribution is very similar to the Bernoulli. If we let X (k,n) denote the set of all binary
strings of length n that contain exactly k ones, the binomial likelihood can be derived from
the Bernoulli likelihood as follows:

P (k|θ, n) =
∑

x∈X (k,n)

P (x|θ, n) (8)

=
∑

x∈X (k,n)

θk(1− θ)n−k (9)

= |X (k,n)| θk(1− θ)n−k (10)

where |X (k,n)| is a count of the number of unique length-n binary vectors that contain
exactly k ones. Elementary combinatorics tells us that:

|X (k,n)| = (nk) =
n!

k!(n− k)!
(11)

Thus, the binomial likelihood is

P (k|θ, n) =
n!

k!(n− k)!
θk(1− θ)n−k (12)

Four different binomial distributions are plotted in Figure 2.

Prior: The beta distribution

Suppose we have a binomial or Bernoulli likelihood function. What should we use
as the prior? A very common choice in this situation is the beta distribution. The beta
distribution has two parameters, β1 and β2, and is designed to be very similar to Equations 5
and 12. The beta distribution is denoted in the following way,

θ|β1, β2 ∼ Beta(β1, β2) (13)

and (if we ignore the constant of proportionality) for the moment,

P (θ|β1, β2) ∝ θβ1−1(1− θ)β2−1. (14)

Now, notice that θ is a probability, so it can vary over the real interval [0, 1]. So the beta
distribution actually describes a probability density function. Probability densities often
confuse students the first time they encounter them. Whenever you have a distribution
defined over a continuous sample space, you actually have a density, not a probability. The
key thing with densities is that they integrate to 1, rather than sum to 1 (which is what
probabilities do). On the surface, you’d think that this doesn’t introduce any difficulties,
but densities can be counterintuitive. The main problem is this: probabilities are required
to sum to 1, so it is necessarily the case that the probability of event X lies in the range [0, 1].
However, densities don’t behave this way: it is perfectly possible for a density to exceed
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Figure 3. Beta distributions.

1, as long as the the integral over the (continuous) sample space is 1. As an example, try
defining a uniform distribution over the range [.3, .4]. Every point in the interval has density
10. This isn’t a mathematical statistics course, so we won’t go into details: for now, the
important thing to recognise is that we can only assign probabilities to a countable number
of events. If you have continuous spaces, then you have an uncountably infinite set of events
to work with, so you can only assign probability density to them.

In any case, since densities are required to integrate to 1 we may write:

P (θ|β1, β2) =
θβ1−1(1− θ)β2−1∫ 1

0 u
β1−1(1− u)β2−1 du

(15)

The integral in the denominator is referred to as a beta function, denoted B(β1, β2). Thus

P (θ|β1, β2) =
θβ1−1(1− θ)β2−1∫ 1

0 u
β1−1(1− u)β2−1 du

(16)

=
1

B(β1, β2)
θβ1−1(1− θ)β2−1 (17)
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=
Γ(β1 + β2)

Γ(β1)Γ(β2)
θβ1−1(1− θ)β2−1 (18)

where the last line exploits a well-known relationship between the beta function and the
gamma function (see below), namely that

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
(19)

Equation 18 is probably the most common description of the beta distribution. Several
beta distributions are plotted in Figure 3.

Refresher: The gamma function

Since the gamma function plays a key role in the beta distribution, and crops up in
several places in the lectures, it may be useful to quickly remind you of what it is. The
gamma function is given by:

Γ(c) =

∫ ∞
0

exp(−u)uc−1du (20)

and, if c is an integer, :

Γ(c) = (c− 1)! (21)

Two of its key properties are

Γ(c) = (c− 1)Γ(c− 1) (22)

and

Γ(c)Γ(1− c) =
π

sin(πc)
(23)

These properties hold even when c is not an integer. In general Γ(c) does not have an analytic
closed form, but it can be approximated to arbitrary precision by a number of different
methods. Matlab code for one of these approximations (the Lanczos approximation) is
given in Figure 4.

The conjugacy property: Posteriors are betas

At this stage we are in a position to see why the beta distribution is so frequently used
as a prior whenever the data are Bernoulli (or binomial). Going back to our tack-flipping
example, let’s imagine that we set a Beta prior over θ. We’ve flipped n tacks, of which k
landed on their heads. Our posterior distribution over θ is given by:

P (θ|n, k, β1, β2) =
P (k|n, θ)P (θ|n, β1, β2)

P (k|n, β1, β2)
(24)

∝ P (k|n, θ)P (θ|n, β1, β2) (25)

= P (k|n, θ)P (θ|β1, β2) (26)
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function q = gamma_lanczos(c)

% reflection formula

if c < 0.5

q = pi / ( sin(pi*c) * gmm_big(1-c));

% normal version

else

q = gmm_big(c);

end

function q = gmm_big(c)

% coefficients

g = 7;

p = [0.99999999999980993, 676.5203681218851, -1259.1392167224028, ...

771.32342877765313, -176.61502916214059, 12.507343278686905, ...

-0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7];

% calculations

c = c-1;

x = p(1);

for i = 1:g+1

x = x + p(i+1) / (c+i);

end

t = c + g + 0.5;

q = sqrt(2*pi) * t^(c+0.5) * exp(-t) * x;

Figure 4. MATLAB code implementing the Lanczos approximation to the Gamma function.

=
n!

k!(n− k)!
θk(1− θ)n−k × Γ(β1)Γ(β2)

Γ(β1 + β2)
θβ1−1(1− θ)β2−1 (27)

∝ θk(1− θ)n−k × θβ1−1(1− θ)β2−1 (28)

= θk+β1−1(1− θ)n−k+β2−1 (29)

This is exactly the same function that we saw in Equation 14. That is, our posterior
distribution is also a beta distribution. Notationally, if

k|n, θ ∼ Binomial(θ, n) (30)

θ|β1, β2 ∼ Beta(β1, β2) (31)

then

θ|k, n, β1, β2 ∼ Beta(β1 + k, β2 + n− k) (32)

This property is called conjugacy, and the complete model is generally called a “beta-
binomial model”. Specifically, we say that “the beta prior is conjugate to the binomial
likelihood”. Whenever you have a conjugate prior, the posterior distribution belongs to the
same family of distributions as the prior. As a consequence, conjugate priors are extremely
useful tools in Bayesian statistics, since they make things a lot more analytically tractable.
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Posterior predictions: the beta-binomial distribution

Suppose that you’ve constructed a beta-binomial model for some data (as per Equa-
tions 30 and 31), and you want to make a prediction about what you expect to happen
next. The first thing that we might want to know is the posterior mean; that is, our best
point estimate for θ. This is given by:

E[θ|k, n, β1, β2] =

∫ 1

0
θ P (θ|k, n, β1, β2) dθ (33)

=

∫ 1

0
θ

Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n− k)
θβ1+k−1(1− θ)β2+n−k−1 dθ (34)

=
Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n− k)

∫ 1

0
θβ1+k(1− θ)β2+n−k−1 dθ (35)

=
Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n− k)
× Γ(β1 + k + 1)Γ(β2 + n− k)

Γ(β1 + β2 + n+ 1)
(36)

=
Γ(β1 + k + 1)

Γ(β1 + k)
× Γ(β1 + β2 + n)

Γ(β1 + β2 + n+ 1)
(37)

=
β1 + k

β1 + β2 + n
(38)

What about the more general prediction about future data? That is, imagine that
we started with a Beta(β1, β2) prior, and then we collected n “tack-flipping” observations,
of which k turned out to be heads. Imagine that we then proposed to collect an additional
m observations. What is the probability that exactly j of these are heads?

P (j|m,n, k, β1, β2) =

∫ 1

0
P (j|m, θ)P (θ|n, k, β1, β2) dθ (39)

=

∫ 1

0

m!

j!(m− j)!
θj(1− θ)m−j

× Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n− k)
θβ1+k−1(1− θ)β2+n−k−1 dθ (40)

=
m!

j!(m− j)!
× Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n− k)

×
∫ 1

0
θβ1+k+j−1(1− θ)β2+n−k+m−j−1 dθ (41)

=
m!

j!(m− j)!
× Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n− k)

×Γ(β1 + k + j)Γ(β2 + n+m− k − j)
Γ(β1 + β2 + n+m)

(42)

The general name for the expected distribution over future observations is the posterior
predictive distribution. The name for the probability distribution in Equation 42 is a “beta-
binomial distribution”. That is, if the prior distribution is beta and the likelihood is bino-
mial, then the posterior predictive distribution is a beta-binomial distribution. Incidentally,
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it is this beta-binomial distribution that is referred to on slide 148 of lectures 11-13 (i.e.,
the particle filtering demo using the AI survey data). Note that when implementing the
beta-binomial distribution you don’t need to calculate all of these gamma functions, because
you can use the Γ(c) = (c − 1)Γ(c − 1) property to simplify things a lot! To see this note
that:

P (j|m,n, k, β1, β2) =
m!

j!(m− j)!
Γ(β1 + β2 + n)

Γ(β1 + β2 + n+m)

×Γ(β1 + k + j)

Γ(β1 + k)

Γ(β2 + n+m− k − j)
Γ(β2 + n− k)

(43)

=
m!

j!(m− j)!

(∏β1+k+j−1
v=β1+k

v
) (∏β2+n+m−k−j−1

v=β2+n−k v
)

(∏β1+β2+n+m−1
v=β1+β2+n

v
) (44)

which is not a very elegant equation, but is very simple to write code for! Notice that in
the special case where m = 1 and j = 1 we obtain:

P (j|m,n, k, β1, β2) =
1!

1!0!

(β1 + k)(0)

(β1 + β2 + n)
= E[θ|n, k, β1, β2] (45)


