The explore exploit dilemma

Computational Cognitive Science 2014
 Dan Navarro

The Turker's dilemma (a.k.a. observe or bet)

Do the HIT: Tag some images, and eventually get a reward when the requester pays. If they pay.

Do your research: Check out Turkopticon (etc.), read the reviews for the requester. Maybe check out Turk and see if there are any better jobs on offer?

The observe or bet task

This is a "blox" machine

These lights flash intermittently.

One light tends to come on more often than the other.

You don't know which one

Observe Guess Blue Guess Red

At every point in time, you can make an observation or bet on which outcome will occur...

If you OBSERVE, you get to see what colour light turns on

"Observing" is like doing your research. You learn something about the state of the world, but receive no rewards.

If you GUESS BLUE, you will get a reward $(+1)$ if you're correct, a loss if you're wrong (-1).

You don't find out whether you were right or wrong until later.

"Betting" is like the Turker committing to a HIT. You spend the time on it, and you should get a reward if you've chosen well.

But you don't find out whether you've done well until later.

- Objective: get as many points as possible
- Correct predictions ("winning bets") win 1 point
- Incorrect predictions ("losing bets") lose 1 point
- Task structure:
- If you observe the outcome, you can't bet so you give up any chance on getting a reward
- If you bet on the outcome, you don't find out if you were right or wrong (until the end of the task)

Bayesian inference

Prior beliefs about the probability that the light will be blue

$$
P(\theta)
$$

Red more likely Blue more likely

Bayesian inference

> Confidence in Blue = 75\%

Posterior beliefs given a single OBSERVE action on trial 1
$P(\theta \mid x) \propto P(x \mid \theta) P(\theta)$

Bayesian inference

Confidence in Blue $=50 \%$

Beliefs updated sequentially: today's posterior is tomorrow's prior

$$
P\left(\theta \mid \mathbf{x}_{t}\right) \propto P\left(x_{t} \mid \theta\right) P\left(\theta \mid \mathbf{x}_{t-1}\right)
$$

Bayesian inference

Confidence in Blue $=69 \%$

Plot the learner's confidence over time,
 as more observations are requested

Optimal* policy is the random walk model for 2-AFC tasks...

"Optimal" policy:

ОООООООВ В В В В В В В В В В В В В В В В В

Then trust blindly in your strategy forever more

"Optimal" policy:

OOOOOOOBBBBBBBBBBBBBBBBBB

Grossly typical pattern of human performance:

ООООООО В В В В В ВОО В В В В В ВО В В В

Humans don't trust their strategy: they constantly check to see if it is working

Why check?

Because things change.

What's the difference?

Static world: today's posterior is

> tomorrow's prior

$$
P\left(\theta \mid \mathbf{x}_{t}\right) \propto P\left(x_{t} \mid \theta\right) P\left(\theta \mid \mathbf{x}_{t-1}\right)
$$

What's the difference?

Static world: today's posterior is tomorrow's prior

$$
P\left(\theta \mid \mathbf{x}_{t}\right) \propto P\left(x_{t} \mid \theta\right) P\left(\theta \mid \mathbf{x}_{t-1}\right)
$$

Dynamic world: today's posterior shapes tomorrow's prior, but the world changes a bit overnight...

$$
P\left(\theta_{t} \mid \mathbf{x}_{t}\right) \propto P\left(x_{t} \mid \theta_{t}\right) \int_{0}^{1} P\left(\theta_{t} \mid \theta_{t-1}\right) P\left(\theta_{t-1} \mid \mathbf{x}_{t-1}\right) d \theta_{t-1}
$$

O-1

Static world...

Dynamic world...

Static world...

Dynamic world...

Human-like strategies start to seem terribly reasonable now...

ООООООО В В В В В ВОО В В В В В ВО В В В

This is what a rational learner does
when making choices in a
changeable world

Observe or bet in a changing world

- Each person plays 5 OB tasks, 50 trials long
- Static condition: bias is always 75% towards the one option (e.g. blue)
- Dynamic condition: bias starts 75% towards one option (e.g. blue) but flips (to red) part way through the task
- Dynamic condition: participants were told that changes could happen, and to expect it to happen a few times
- Participants: 108 workers on Amazon Mechanical Turk

Results

Group the trials into 5 blocks of 10 trials
For each block, plot the proportion of trials spent on OBSERVE actions

Results

Results

Results

Model produces human like behaviour

Game 5

* Every game is fit separately for each person (2 parameters to describe a single OB task: a change rate and a confidence threshold)

The fits are really good*

* Meh. I'm pretty sure this model has too many free parameters. It's a useful descriptive model, but I wouldn't read too much into this just yet

Parameter estimates are interesting

World is...
static
dynamic

Learner

 assumes.[^0]World is...

Learner assumes.
dynamic
static

dynamic

World is...
static

Learner assumes.

World is...

static

Learner

 assumes...

Back to machine learning: Optimal decision making across a sequence of decisions...

The toddler's dilemma

Four possible moves at each time step

Right

Down

Two possible rewards...

Environmental hazards

-20 penalty every time

Environmental hazards

-5 penalty every time

Environmental hazards

-1 penalty every time

Shortest path is painful

Safest path is long

But toddler motor control is imperfect

Intended action

Outcome

So the safest path is really long

And toddlers are busy people who can't afford to wait that long!

What should she do?

What should she do?

What if she started here?

What should she do?

Ice cream eventually?

Or cookie
quickly?

What should she do?

What about now?

What if she were super-clumsy?

Normal toddler
Clumsy toddler

2.5%	90%	2.5%
2.5%	\%)	2.5%

12.5%	50%	12.5%
12.5%	\%)	12.5%

Markov decision policies

Markov decision policies

	\leftarrow						
$\uparrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\leftarrow	\leftarrow
\uparrow							
\downarrow	\downarrow	\rightarrow	\uparrow	\rightarrow	\uparrow	\uparrow	\uparrow
\rightarrow	\rightarrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
\rightarrow	\uparrow	\uparrow	\uparrow	\rightarrow	\uparrow	\uparrow	\downarrow
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\rightarrow	\rightarrow	\downarrow
\uparrow	\leftarrow	\leftarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	

The agent needs to have a decision policy that selects actions.

Each state is associated with an action. Because the action depends only on the state that you're in, it's a Markov decision policy (MDP)

Learning an MDP

Bellman equations

Bellman equations

Expected utility of future
rewards

Bellman equations

Bellman equations

Bellman equations

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} u\left(s^{\prime}\right) P\left(s^{\prime} \mid a, s\right)
$$

This is the equation for the expected utility of action a

Bellman equations

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} u\left(s^{\prime}\right) P\left(s^{\prime} \mid a, s\right)
$$

Utility of
state s'

Bellman equations

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} u\left(s^{\prime}\right) P\left(s^{\prime} \mid a, s\right)
$$

Utility of Probability that you'll be state s' in state s' next, given that you're currently in state s and you make action a

Bellman equations

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} u\left(s^{\prime}\right) P\left(s^{\prime} \mid a, s\right)
$$

Bellman equations

Update the utilities...

Updated utility on iteration i+1 of the algorithm

The utility assigned to state s at iteration i of the algorithm

Initialise all utilities $u(s)=r(s)$
Loop until utilities do not change:
Perform a "Bellman update" to the utilities
Decision policy is:
Choose the action with highest expected utility!

Demonstration code: mdp.R

Treating the observe or bet task as an MDP problem

Optimal policy must satisfy Bellman's equation over belief states:

$$
U(\mathbf{b})=R(\mathbf{b})+\gamma \max _{a} \sum_{\mathbf{b}^{\prime}} P\left(\mathbf{b}^{\prime} \mid a, \mathbf{b}\right) U\left(\mathbf{b}^{\prime}\right)
$$

Each belief state \mathbf{b} corresponds to a distribution over possible world states.

The posterior $P(\theta \mid \mathbf{x})$ is the belief.

Reward expected now given current beliefs about the world

$$
U(\mathbf{b})=R(\mathbf{b})+\frac{\gamma \max _{a} \sum_{\mathbf{b}^{\prime}} P\left(\mathbf{b}^{\prime} \mid a, \mathbf{b}\right) U\left(\mathbf{b}^{\prime}\right)}{\uparrow}
$$

Utility assigned to future rewards, temporally discounted and dependent on continuing to use the optimal policy

Space of beliefs is high dimensional, but the observe or bet task is simple enough that value iteration works:
$U(\mathbf{b}) \leftarrow R(\mathbf{b})+\gamma \max _{a} \sum_{\mathbf{b}^{\prime}} P\left(\mathbf{b}^{\prime} \mid a, \mathbf{b}\right) U\left(\mathbf{b}^{\prime}\right)$

The answer.

[^0]: dynamic

