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Lecture outline

• What is decision-making? 
• The classical approach: expected utility 
• Calculating probabilities isn’t easy 
• Assigning utilities is tricky



“Decision making” is a broad term



Which of these is darker?



Which of these is darker?



Should I eat the beef or the fish?



Should I eat the beef or the fish?



Vacation in Rome or in Venice?



Vacation in Rome or in Venice?



Cut the left wire or the right wire?



Cut the left wire or the right wire?



A set of possible actions



Outcomes associated with actions

X

  



Utilities associated with outcomes?

X +1 -1

+5 -50

+100 +101

+10 -10000

  



Decision problems vary

X +1 -1

+5 -50

+100 +101

+10 -10000

  

This is a perceptual problem 
It uses only one “kind” of information (brightness) 
The problem is familiar to people 
The utilities are symmetric (+1 & -1) 
The problem isn’t important (utilities near 0) 



Decision problems vary

X +1 -1

+5 -50

+100 +101

+10 -10000
  

  

This is both perceptual and cognitive 
Many “kinds” of information 
The problem is familiar to people 
The utilities are asymmetric (+5 & -50) 
The problem is not usually important 



Decision problems vary

X +1 -1

+5 -50

+100 +101

+10 -10000
  

  

Mostly cognitive, though some perception 
Many “kinds” of information 
Not a common problem, but moderately familiar 
The utilities are symmetric (+100 & +101) 
The problem is important (is the decision?) 



Decision problems vary

X +1 -1

+5 -50

+100 +101

+10 -10000

  

Mostly cognitive, though some perception 
Many “kinds” of information 
Very unfamiliar to almost everyone 
The utilities are very asymmetric 
The problem is very important 



Optimal decision making when the 
agent has full information



Choose the maximum utility option

a⇤ = argmax

ai

u(ai)

The best 
possible action 

is chosen

u() is a function 
assigning utilities to 

actions

When all the information 
about the outcomes is 
known, a rational actor 

should select the action that 
produces the most utility



Soft rationality

Probability of 
choosing a 

particular action

Monotonically 
increasing function 
f() of the utility of 

that action

When all the information 
about the outcomes is 

known, a sensible actor 
should be more likely to 

select the action that 
produces the most utility

P (ai) = f(u(ai))



Triage decisions



An unrealistic triage problem

• Triage: 
• Three critical patients arrive at the hospital at the same time.  

• Only one doctor is free to assist: will treat patients in order, passing 
over people if they have died, or if they die mid-treatment 

• Information: 
• Patient A: Death in 5 minutes, takes 4 minutes to treat. 

• Patient B: Death in 11 minutes, takes 6 minutes to treat.  

• Patient C: Death in 35 minutes, takes 3 minutes to treat. 

• Possible actions: 
• Set of 6 possible treatment orders to choose between. 

• ABC, ACB, BAC, BCA, CAB, CBA 

• Which is best?



Expected utility formulation

label action outcome utility

a1 ABC all live +3

a2 ACB B dies +2

a3 BAC A dies +2

a4 BCA A dies +2

a5 CAB A dies +2

a6 CBA A dies +2

Each treatment order 
counts as a single action 

by the triage nurse
What happens?

Utility is a count 
of the number 
of survivors?



Optimal decision making in probabilistic 
environments



Real world triage only supplies partial 
information to the agent

You don’t know exactly how long a 
patient has to live, nor do you know 

exactly how long it will take the doctor 
to stabilise the patient (or if that’s even 

possible)



Maximise your expected utility

EU(a) =
X

z

u(z)P (z|a)

Expected utility 
of option a

Utility of 
outcome z

Probability with 
which (you think) 

outcome z occurs 
given option a



ABC AB AC BC A B C -
ABC
ACB
BAC
BCA
CAB
CBA

The action set is 
the set of possible 
treatment orders

The set of possible outcomes  
is the set of survivor lists

The previous triage problem…



ABC AB AC BC A B C -
ABC 1 0 0 0 0 0 0 0
ACB 0 0 1 0 0 0 0 0
BAC 0 0 0 1 0 0 0 0
BCA 0 0 0 1 0 0 0 0
CAB 0 0 0 1 0 0 0 0
CBA 0 0 0 1 0 0 0 0

Each possible action (row) is a probability 
distribution over possible outcomes (columns) 

let’s call this probability matrix P

The previous triage problem…



ABC AB AC BC A B C -
ABC 1 0 0 0 0 0 0 0
ACB 0 0 1 0 0 0 0 0
BAC 0 0 0 1 0 0 0 0
BCA 0 0 0 1 0 0 0 0
CAB 0 0 0 1 0 0 0 0
CBA 0 0 0 1 0 0 0 0

Refer to this matrix of probability 
distributions as P

The previous triage problem…



ABC AB AC BC A B C -
ABC 1 0 0 0 0 0 0 0
ACB 0 0 1 0 0 0 0 0
BAC 0 0 0 1 0 0 0 0
BCA 0 0 0 1 0 0 0 0
CAB 0 0 0 1 0 0 0 0
CBA 0 0 0 1 0 0 0 0

We have a vector that assigns 
utilities to outcomes u

+3 +2 +2 +2 +1 +1 +1 0

The previous triage problem…



ABC AB AC BC A B C -
ABC 1 0 0 0 0 0 0 0
ACB 0 0 1 0 0 0 0 0
BAC 0 0 0 1 0 0 0 0
BCA 0 0 0 1 0 0 0 0
CAB 0 0 0 1 0 0 0 0
CBA 0 0 0 1 0 0 0 0

vector of expected utilities e is 
calculated by multiplying 

probability by utility and summing

+3
+2
+2
+2
+2
+2

The previous triage problem…

+3 +2 +2 +2 +1 +1 +1 0



If P is the matrix of conditional probabilities, u is a column vector 
of outcome utilities, and e is a column vector of expected utilities 

of actions, then we’re just doing the matrix operation e = P u

… has a simple matrix formulation

u0 =
⇥
3 2 2 2 1 1 1 0

⇤

P =

2

6666664

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

3

7777775
e =

2

6666664

3
2
2
2
2
2

3

7777775



e = Pu

=

2

6666664

.5 .5 0 0 0 0 0 0
0 .25 .25 .25 .25 0 0 0
0 0 .33 .34 .33 0 0 0
0 0 0 .5 .5 0 0 0
0 0 0 1 0 0 0 0

.125 .125 .125 .125 .125 .125 .125 .125

3

7777775
⇥

2

66666666664

3
2
2
2
1
1
1
0

3

77777777775

=

2

6666664

2.50
1.75
1.67
1.50
2.00
1.50

3

7777775 Expected utility calculations are 
straightforward linear algebra even in 

the probabilistic case.  
!

R code: e <- P %*% u



Computing expected utilities isn’t easy: 
A slightly more difficult triage problem



Probabilistic triage problems

• Keep it simple: 
– 3 patients 
– 1 doctor 
!

• Robot doctor: 
– Treats patients in order 
– If a patient dies before or 

during treatment, moves 
immediately to the next one



How long do the patients have to live?

Patient A

Patient C

Patient B
Nurse beliefs about patient death 
probabilities… the probability that the 
patient dies on exactly the t-th minute 
is Poisson(λ): 
!
!
!
  
Patient A: λ = 10  
Patient B: λ = 20  
Patient C: λ = 15 

P (t|�) = �t
exp(��)

t!



How long does treatment take?

Patient A

Patient C

Patient B Amount of time taken to save 
the patient follows a uniform 
distribution:

Patient A:  6-15 minutes

Patient C:  11-30 minutes
Patient B:  2-50 minutes

(Although the patient might die 
while you’re treating them!)



Patient A

Patient C

Patient B

Patient A

Patient C

Patient B

It’s your first shift on the ER.  
You have 20 seconds to make this decision.



Suppose it turned out like this…

• Treatment times: 
– Patient A takes 10 minutes to treat 
– Patient B takes 30 minutes to treat 
– Patient C takes 13 minutes to treat 
!

• Death times: 
– Patient A dies in the 12th minute 
– Patient B dies in the 20th minute 
– Patient C dies in the 15th minute 
!

• What happens?



• Only patient A is saved. 
– Starts on A at minute 1. 
– A saved on minute 10. 
– Starts on C at minute 11. 
– C dies on minute 15. 
– Starts on B at minute 16.  
– B dies on minute 20. 

• Treatment times: 
– Patient A takes 10 minutes to treat 
– Patient B takes 30 minutes to treat 
– Patient C takes 13 minutes to treat 
!

• Death times: 
– Patient A dies in the 12th minute 
– Patient B dies in the 20th minute 
– Patient C dies in the 15th minute 
!

• What happens?

And suppose you picked ACB



• More generally… 
– If you start with patient B, all 

three people die. 
– If you start with patient A, 

only A survives 
– If you start with patient C, 

only C survives 

• Treatment times: 
– Patient A takes 10 minutes to treat 
– Patient B takes 30 minutes to treat 
– Patient C takes 13 minutes to treat 
!

• Death times: 
– Patient A dies in the 12th minute 
– Patient B dies in the 20th minute 
– Patient C dies in the 15th minute 
!

• What happens?

What about the other actions?



But you don’t know when people will die or 
how long the treatment takes!



The answer



  

  Why does this happen? 

ABC maximises expected utility



for M iterations 
for X = [A,B,C] 

generate a random time of death dX for patient X 

generate a random length of treatment tX for patient X 

for all possible treatment orders, O 
simulate doctor’s behaviour, and determine which 
patients survive 

for X = [A,B,C] 
if patient X survives, increment count: NOX = NOX+1 

for X = [A,B,C]!
for all possible treatment orders, O 

PXO=NXO / M

CALCULATE SURVIVAL PROBABILITY PXO, FOR ALL 
PATIENTS X AND ALL TREATMENT ORDERS O:



GENERATE TIME OF DEATH, d~Poisson(λ)
set L=exp(-λ); d=0; p=1;!
do while p > L!

d = d+1;!
generate u ~ Uniform([0,1])!
p = p*u;!

d = d-1;

GENERATE LENGTH OF TREATMENT, t

I’m assuming that this one is obvious… randomly 
select t from the set of treatment times (e.g., 
6,7,8,…15 for patient A) 



input: treatment order o, time of death d, time to treat t!
set minutes elapsed m = 0!
do until all patients treated or dead 
  look up next patient, denoted X!
  if tX + m < dX!

    patient X lives 
   m=m+tX!

  else 
   patient X dies 
   m = max(m, dX)!
output: list of survivors 
      

SIMULATE THE DOCTOR’S BEHAVIOUR



demonstration code: triage.R



Summary

• What did we calculate here? 
• Computation of P(z|a), the probability of an outcome given an action 

• e.g., P(“A lives, BC die” | “order is ABC”) 

• The point: 
• Decision making depends on the correct evaluation of the probabilities 

• This is often hard to do.



  

  

Utilities are not straightforward

ABC dooms person C with probability near 1 
ACB gives person C a slim hope 
Slightly lower expected survivor count, more 
evenly spread. Is that a worthwhile trade off?? 



It’s not purely a computational problem: 
The St Petersburg paradox



Flipping coins until you get a tail

T HT HHT HHHT etcoutcome:

payout: $1 $2 $4 $8 etc

What is a fair price to pay in 
exchange for the opportunity to play 

this game?



The game is infinitely valuable?

Most people are only 
willing to pay a few dollars. 
Are they being irrational?

EU =

X

outcome

u(outcome)P (outcome)

= u(T)P (T) + u(HT)P (HT) + u(HHT)P (HHT) + . . .

=

✓
1⇥ 1

2

◆
+

✓
2⇥ 1

4

◆
+

✓
4⇥ 1

8

◆
+ . . .

=

1

2

+

1

2

+

1

2

+ . . .

= 1



Solution #1

• Money doesn’t equal happiness 
• Utility doesn’t scale linearly with dollar value 

• Specifically, it has decreasing marginal utility 

!

• Daniel Bernoulli (1788): 
• “The determination of the value of an item must not be based on the 

price, but rather on the utility it yields…. There is no doubt that a gain 
of one thousand ducats is more significant to the pauper than to a rich 
man though both gain the same amount.”

$

☺ 



Solution #1

• It now depends on how much money you start with 
• Calculations are based on the utility of your bank balance 

• Compare the current utility to the expected utility after the game 

!

• What happens now? 
• Say you start with a bank balance of w and the game costs c to play 

• Expected utility of bank balance scales logarithmically with $ 

• So if you get k heads before the first tail the utility of the game is: 

!

• The utility of not playing is just the current utility of your bank balance: 

!

• You should play if the the utility of playing is larger

ln(w � c+ 2k)

ln(w)



Solution #1

• More generally: 
• Getting k heads before a tail has probability 2-(k+1) 
• Expected utility of the playing the game is computed by 

taking a probability-weighted average of all possible 
outcomes 

• So:

EU(“play”) =
1X

k=0

ln(w � c+ 2k)

2k+1

EU(“don’t play”) = ln(w)



2 3 4 5 6 7

−0
.0

6
−0

.0
2

0.
02

Cost of the Game

Ex
pe

ct
ed

 G
ai

n

$50
$100
$500

If the real utility of 
money scales 

logarithmically with 
nominal value, the 

game is only worth a 
few dollars 



Solution #2

• Finite wealth of the casino 
• If the casino only has w dollars in their bank account… 

• Or is only insured up to a payout of w dollars… 

• This imposes an upper bound on your winnings 

• You hit this limit after L flips, where 

!

• Now the value of the game is:



Unless the person offering you the 
bet is genuinely willing to pay out 
more than $10,000 the game isn’t 

worth more than a few dollars



Some issues…



Utility is a difficult concept

• “Cost functions” and “utility functions” 
• They’re everywhere in machine learning and statistics 

• It’s hard to define the behaviour of an optimal agent without them 

• But they’re psychologically tricky 

!

• It’s not easy to map between $10 and a utility value 
• If we can’t do that, how will we assign utility to… 

• The first cup of coffee on a cold grey morning 

• An unexpected phone call from an old friend 

• Solving an annoying puzzle 

• Your first kiss



Utility is a difficult concept

• “Cost functions” and “utility functions” 
• They’re everywhere in machine learning and statistics 

• It’s hard to define the behaviour of an optimal agent without them 

• But they’re psychologically tricky 

!

• It’s not easy to map between $10 and a utility value 
• If we can’t do that, how will we assign utility to… 

• The first cup of coffee on a cold grey morning 

• An unexpected phone call from an old friend 

• Solving an annoying puzzle 

• Your first kiss

Does it even make sense to try? 
Is there really any such thing as a “utility scale” that 

allows you to compare these things? 
Or are they truly incommensurate?



Summary

• Expected utility theory 
• Calculating action utilities can be hard 
• Assigning outcome utilities can be hard 
!

• Next lecture: improving on EU theory


