
Computational Cognitive Science

Lecture 19: HMMs and more 
complex grammars
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‣Because of the problem of long-distance dependencies, 
Markov models are not good models of language: they 
need to be too large to capture its regularities
‣Grammars that incorporate parts of speech can be useful 

for greatly minimising the size of the grammar required
‣Hidden Markov models, which involve hidden states that 

generate observations, can capture parts of speech
‣We can use such models to generate sequences of 

observations in both linguistic and non-linguistic contexts

Last time



Plan

‣ Last time: introduction to HMMs
- Limitations of n-grams applied to language
- Basics of HMMs
‣ Today: finishing HMMs, and more complex structures

- Determining the likelihood of a given observation
- Calculating the most likely state sequence
- Finding the best HMM for given data
- More complex models of language
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‣ Last time: introduction to HMMs
- Limitations of n-grams applied to language
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➡ Today: finishing HMMs, and more complex structures
- Determining the likelihood of a given observation
- Calculating the most likely state sequence
- Finding the best HMM for given data
- More complex models of language



Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do 
we efficiently compute how likely a 
certain observation is?
‣Given a sequence of observations Y 

and a model M, how do we infer the 
state sequence that best explains the 
observations?
‣Given an observation sequence Y and 

a space of possible models found by 
varying the model parameters M = 
(A,B,Π), how do we find the model 
that best explains the observed data?

Baum-Welch** 
algorithm

* You should be able to implement this;  ** You don’t need to be able to implement this

Forward* 
algorithm

Viterbi* 
algorithm
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Forward* 
algorithm

Viterbi* 
algorithm

Baum-Welch** 
algorithm



Computing likelihood of observations

For any output sequence Y = (y1,…,yT) we can 
calculate the probability of observing it by summing 
over all possible sequences of hidden states that 

could have generated it:



P( he eats | A,B,Π)
= P(pro|S) P(he|pro) P(verb|pro) P(eats| verb) P(E|verb)

= 0.7 * 0.3 * 1.0 * 0.5 * 1.0 
= 0.105

But that was easy, because there was just one way to generate 
that observation

Example: simple language
How likely are you to see “he eats”?



P(zzz snort| A,B,Π)

= P (zzz| asleep) P(asleep) P(calm | asleep) P(snort|calm) + 
    P(zzz| asleep) P(asleep) P(asleep | asleep) P(snort|asleep)
= (0.9) (0.3) (0.2) (0.8) + (0.9) (0.3) (0.5) (0.1)
= 0.0675 + 0.0135
= 0.081

Example: Mitee the warrior
How likely are you to see “zzz snort”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Output symbol matrix B:



Computing likelihood of observations

You can see that this will grow increasingly difficult as 
the HMM grows increasingly larger (or there are fewer 

zeros in the transition matrix)

Having to sum over every possible set of hidden states, 
in general, requires on the order of NT+1 multiplications, 

where T = # of time steps, and N = the number of 
states.  The complexity is thus O(NT)



Simplifying the computation

Luckily, in order to calculate the most likely path we don’t 
have to sum over all possible state sequences

Because of the limited horizon property, the probability of 
the path at any one point only depends on the probability 

of the current point and the probability of the previous 
point 



Forward algorithm

An algorithm for efficiently calculating the probability of a 
sequence of observations

Incremental: at each observation step, you find the 
most likely path until that point

Complexity is O(N2T), assuming a fully connected 
model – a big improvement over O(NT)



There is only 
one state that 

outputs zzz

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble

asleep

roar



There is only 
one state that 

outputs zzz

P(asleep|S)

P(zzz|asleep) (0.9)(0.3)

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble
0.3; 0.9 asleep

0.27

roar



P(asleep|asleep)
P(snort|asleep)

(0.27)(0.5)(0.1)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar



P(calm|asleep)
P(snort|calm)

(0.27)(0.2)(0.8)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar



P(asleep|asleep)

P(grumble|asleep)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.5; 0 asleep
0

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar



(0.0135)(0.2)(0.2) + (0.0432)(0.2)(0.3)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.5; 0

0.2; 0.2
calm

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar



Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

(0.0135)(0.2)(0.2) + (0.0432)(0.2)(0.3)

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

0.5; 0



 (0.0135)(0.2)(0.8) + 
(0.0432)(0.2)(0.8) 

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry

0.2; 0.8

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

0.5; 0



 (0.0135)(0.2)(0.8) + 
(0.0432)(0.2)(0.8) 

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

0.5; 0



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

0.5; 0



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

hungry

0.00313*0.2*0.2 + 0.00907*0.3*0.2

0.2; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

0.3; 0.2 hungry
0.00067

0.00313*0.2*0.2 + 0.00907*0.3*0.2

0.2; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

0.3; 0.2 hungry
0.00067

0.2; 0.2

0.00313*0.1*1.0 + 
0.00907*0.5*1.0 

0.1; 1.0

angry

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

0.3; 0.2 hungry
0.00067

0.2; 0.2

0.00313*0.1*1.0 + 
0.00907*0.5*1.0 

0.5; 1.0

0.1; 1.0

angry
0.00485

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

roar

0.5; 0



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

0.3; 0.2 hungry
0.00067

0.2; 0.2

0.5; 1.0

0.1; 1.0

angry
0.00485

Total probability of observing 
this sequence: 

0.00067+0.00485 = 0.055

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0



This is called the forward algorithm, because we 
calculated incrementally moving forward in time 

zzz snort grumble

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar



Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do 
we efficiently compute how likely a 
certain observation is?

➡ Given a sequence of observations Y 
and a model M, how do we infer the 
state sequence that best explains the 
observations?
‣Given an observation sequence Y and 

a space of possible models found by 
varying the model parameters M = 
(A,B,Π), how do we find the model 
that best explains the observed data?

Baum-Welch** 
algorithm

Forward* 
algorithm

Viterbi* 
algorithm



Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do 
we efficiently compute how likely a 
certain observation is?

➡ Given a sequence of observations Y 
and a model M, how do we infer the 
state sequence that best explains the 
observations?

Forward* 
algorithm

Viterbi* 
algorithm

Idea: what if we maximise as we go through the 
trellis, rather than sum up all of the states?



Viterbi algorithm

An algorithm for efficiently calculating the most likely path 
through an HMM, given a sequence of observations

Incremental: at each observation step, you find the 
most likely path until that point

Complexity is O(N2T), assuming a fully connected 
model – a big improvement over O(NT)



There is only 
one state that 

outputs zzz

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble

asleep

roar



There is only 
one state that 

outputs zzz

P(asleep|S)

P(zzz|asleep) (0.9)(0.3)

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble
0.3; 0.9 asleep

0.27

roar



P(asleep|asleep)
P(snort|asleep)

(0.27)(0.5)(0.1)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar



P(calm|asleep)
P(snort|calm)

(0.27)(0.2)(0.8)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar



P(asleep|asleep)

P(grumble|asleep)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.5; 0 asleep
0

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar



(0.0135)(0.2)(0.2) = 0.00054

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.5; 0

0.2; 0.2
calm

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

0.00054



Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

(0.0135)(0.2)(0.2) = 0.00259

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00259

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

0.5; 0



Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

0.00259 > 0.00054

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00259

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.5; 0



 (0.0135)(0.2)(0.8) = 
0.00216

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2 calm

hungry

0.2; 0.8

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

0.2; 0.2

0.5; 0

0.00216

0.00259



 (0.0432)(0.2)(0.8) = 
0.00691 

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2 calm

hungry
0.00691

0.2; 0.8

0.2; 0.8

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

0.2; 0.2

0.5; 0

0.00259



Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2 calm

hungry
0.00691

0.2; 0.8

0.2; 0.8

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

roar

0.2; 0.2

0.5; 0

0.00691 > 0.00216

0.00259



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

0.5; 0

0.00259

0.00691



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

hungry

0.00259*0.2*0.2  = 0.000104

0.2; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0

0.00259

0.00691 1.04e-4



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

hungry

0.00691*0.3*0.2  = 0.000415

0.2; 0.2

roar

0.5; 0

0.00259

0.00691 4.15e-4

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.3; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8



0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

hungry

0.000415 > 0.000104

roar

0.5; 0

0.00259

0.00691 4.15e-4

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.3; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8



0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

hungry

roar

0.5; 0

0.00259

0.00691 4.15e-4
0.3; 0.2

0.00259*0.1*1.0 = 
0.000259

0.1; 1.0

angry

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

2.59e-4



0.5; 1.0

0.3; 0.2

0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

hungry

roar

0.5; 0

0.00259

0.00691 4.15e-4

0.00691*0.5*1.0 = 
0.00345

0.1; 1.0

angry
0.00345

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3



0.5; 1.0

0.3; 0.2

0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see 
“zzz snort grumble roar”?

hungry

roar

0.5; 0

0.00259

0.00691 4.15e-4

0.00345 > 0.000259

0.1; 1.0

angry
0.00345

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3



0.5; 1.0

0.3; 0.2

0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

hungry

roar

0.5; 0

0.00259

0.00691 4.15e-4

0.00345 > 0.000259

0.1; 1.0

angry
0.00345

Given this, is the most likely state sequence 
just the one whose states are most probable 

at every point in time?

This worked out…



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

roar

0.5; 0

0.00259

0.00691

Given this, is the most likely state sequence 
just the one whose states are most probable 

at every point in time?

But imagine the transition 
probabilities were slightly different

0.1; 0.9
0.00163

0.7; 0.9

0.5; 0.01

0.1; 

0.01

3.45e-5

hungry

angry



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

roar

0.5; 0

0.00259

0.00691

Given this, is the most likely state sequence 
just the one whose states are most probable 

at every point in time?

But imagine the transition 
probabilities were slightly different

0.1; 0.9
0.00163

0.7; 0.9

0.5; 0.01

0.1; 

0.01

3.45e-5

hungry

angry

Now the most likely 
final state is different...



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

roar

0.5; 0

0.00259

0.00691

Given this, is the most likely state sequence 
just the one whose states are most probable 

at every point in time?

But imagine the transition 
probabilities were slightly different

0.1; 0.9
0.00163

0.7; 0.9

0.5; 0.01

0.1; 

0.01

3.45e-5

hungry

angry

And so is the most 
likely path to that state



0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

roar

0.5; 0

0.00259

0.00691

Given this, is the most likely state sequence 
just the one whose states are most probable 

at every point in time?

But imagine the transition 
probabilities were slightly different

0.1; 0.9
0.00163

0.7; 0.9

0.5; 0.01

0.1; 

0.01

3.45e-5

hungry

angry

Note that this path 
does not include the 

state that was 
previously most likely



In order to calculate the most likely state sequence, 
you need to find the maximum transition at each 

point, get to the end, and then backtrack through

This algorithm – finding all of the forward probabilities 
(maxima, not sums), and then backtracking – is 

called the Viterbi algorithm.



Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do 
we efficiently compute how likely a 
certain observation is?
‣Given a sequence of observations Y 

and a model M, how do we infer the 
state sequence that best explains the 
observations?

➡ Given an observation sequence Y 
and a space of possible models found 
by varying the model parameters M = 
(A,B,Π), how do we find the model 
that best explains the observed data?

Baum-Welch** 
algorithm

* You should be able to implement this;  ** You don’t need to be able to implement this

Forward* 
algorithm

Viterbi* 
algorithm



Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do 
we efficiently compute how likely a 
certain observation is?
‣Given a sequence of observations Y 

and a model M, how do we infer the 
state sequence that best explains the 
observations?

➡ Given an observation sequence Y 
and a space of possible models found 
by varying the model parameters M = 
(A,B,Π), how do we find the model 
that best explains the observed data?

Baum-Welch** 
algorithm

* You should be able to implement this;  ** You don’t need to be able to implement this

I’ll give the main idea of how it works, but not all of 
the nitty-gritty detail. You don’t need to be able to 

implement this – I just want to get you started in case 
you ever want to.  



Baum-Welch algorithm

Basic idea: This is just an EM algorithm! But instead of: 

Assignment step (E-step):
   Calculate the likelihood of 
each data point in each cluster, 
assuming the cluster is a 
Gaussian with the current mean, 
standard deviation, and weight

Update step (M-step):
   Recalculate the means

   Recalculate the standard 
       deviations

   Recalculate the weights



Assignment step (E-step):
   Calculate the probability of the observation 
sequence given the current model (A, B, Π)

Update step (M-step):

   Recalculate A
   Recalculate B
   Recalculate Π

Baum-Welch algorithm

Basic idea: This is just an EM algorithm! But instead of: 

Forward 
algorithm

πi  = expected frequency in state i at time t=1 

bijk  = expected # of transitions from state i to j with k observed
Expected number of transitions from i to j

aij  = expected number of transitions from state i to j 
Expected number of transitions from state i 



Baum-Welch algorithm

‣ Because it is an EM algorithm, it has the same properties:

1. Guaranteed (fairly rapid) convergence, but only to local 
maxima, not global maxima

2. Dependence on initial values. In practice, it is especially 
important to have good starting points for the output 
parameters B; estimates of A are fairly robust to initial 
starting point.



Stepping back a bit...

We have defined what a Hidden Markov Model (HMM) is, and 
proposed it as a better model for language than an n-gram 
model (i.e., a standard Markov Model)

We have seen in detail how it is possible to calculate the most 
probable path of hidden states in an HMM, and the probability 
of an observation

We have seen in brief how it is possible to figure out (imperfectly) 
what the most probable set of transition probabilities (A,B,Π) 
are, given a set of observations



Stepping back a bit...

We have defined what a Hidden Markov Model (HMM) is, and 
proposed it as a better model for language than an n-gram 
model (i.e., a standard Markov Model)

But are HMMs indeed a good model of language?

Not really.



Plan

‣ Last time: introduction to HMMs
- Limitations of n-grams applied to language
- Basics of HMMs

➡ Today: finishing HMMs, and more complex structures
- Determining the likelihood of a given observation
- Calculating the most likely state sequence
- Finding the best HMM for given data
➡ More complex models of language



Still have a parameter explosion problem

det noun

adj

verb
0.2

0.8

0.1

0.9

1.01.0

pro

0.3

0.7
1.0

E

(0.5) verb  eats
(0.5) verb  runs
(0.3) pro  he
(0.3) pro  she
(0.4) pro  it
(0.7) det  the
(0.3) det  a
(0.4) noun  boy
(0.4) noun  dog
(0.2) noun  tiger
(1.0) adj  happy



Still have a parameter explosion problem

det noun

adj

verb
0.2

0.8

0.1

0.9

1.01.0

pro

0.3

0.7
1.0

E

(0.5) verb  eats
(0.3) verb  runs
(0.2) verb  write
(0.3) pro  he
(0.3) pro  she
(0.4) pro  it
(0.7) det  the
(0.3) det  a
(0.4) noun  boy
(0.2) noun  dog
(0.2) noun  tiger
(0.2) noun  students
(1.0) adj  happy

Suppose you want to make it able to 
produce: The students write

Now it also produces:
   The dog write
   A students runs   
     The students eats
   He write



Still have a parameter explosion problem

As before, you have to add new states to the 
model to solve this problem



Still have a parameter explosion problem

det

adj
0.2

0.4

0.1

0.4

1.0

1.0

S

proP
0.15

0.3
1.0

E

(0.5) verbS  eats
(0.5) verbS  runs
(1.0) verbP  write
(0.3) proS  he
(0.3) proS  she
(0.4) proS  it
(0.7) det  the
(0.3) det  a
(0.4) nounS  boy
(0.4) nounS  dog
(0.2) nounS  tiger
(1.0) nounP  students
(1.0) adj  happy

proS

nounP

verbP

1.00.4

nounS0.4
0.5

verbS

1.0

1.0



Still have a parameter explosion problem

It’s made worse if we make the grammar even more complicated 

EverbP

verbS

det

adj

proP

proS

nounP

nounS

adj

det

det

S

proP

nounP

nounS

adj

det

adj

proS



Still have a parameter explosion problem

However, you might notice a regularity in this grammmar

EverbP

verbS

det

adj

proP

proS

nounP

nounS

adj

det

det

S

proP

nounP

nounS

adj

det

adj

proS



Still have a parameter explosion problem

However, you might notice a regularity in this grammmar

S
NPP E

NPS

verbP

verbS

NPP

NPS

phrase



Still have a parameter explosion problem

S
NPP E

NPS

verbP

verbS

NPP

NPS

Need to specify what 
each phrase means

NPS  proS
NPS  det nounS
NPP  proP
NPP  det nounP 



Still have a parameter explosion problem

S
NPP E

NPS

verbP

verbS

NPP

NPS

A grammar like this, which 
is formed by “clustering” 
states of an HMM, has 

phrase structure

NPS  proS
NPS  det nounS
NPP  proP
NPP  det nounP 



Still have a parameter explosion problem

S
NPP E

NPS

VPP

VPS

We can even form phrases of 
other phrases - if we do that, 

we say the grammar has 
hierarchical phrase structure

VPS  verbS NPS
VPP  verbP NPP
NPS  proS
NPS  det nounS
NPP  proP
NPP  det nounP 



This is a context-free grammar (CFG)

S NPS VPS
S NPP VPP
VPS  verbS NPS
VPP  verbP NPP
NPS  proS
NPS  det nounS
NPP  proP
NPP  det nounP 

Context-free grammars can be 
formed from an HMM by clustering 

states into phrases. They have 
hierarchical phrase structure: a key 

feature of language



Formal definition of CFG (or PCFG)

(0.5) S  NPS VPS

(0.5) S  NPP VPP
(1.0) VPS  VS NPS

(1.0) VPP  VP NPP

(0.7) NPS  PROS
(0.3) NPS  D NS

(0.7) NPP  PROP
(0.3) NPP  D NP 

(0.3) PROS  he
(0.3) PROS  she
(0.4) PROS  it
(0.3) PROP  her
(0.3) PROP  him
(0.4) PROP  it
(0.3) D  a
(0.7) D  the
(0.1) NS  A NS
(0.1) NP  A NP

(0.3)   NS  boy
(0.3)   NS  tiger
(0.3)   NS  dog
(0.2)   NP  boy
(0.2)   NP  tiger
(0.2)   NP  dog
(0.15) NP  school
(0.15) NP  house
(0.5)   VS  sees
(0.5)   VS  cleans
(0.5)   VP  see
(0.5)   VP  clean
(1.0)   A  happy

{a, the, boy, tiger, dog, school, it, she, her, him, he…}

{S,VPS,VPP,NPS,NPP,PROS,D,NS,PROP,NP,VS,A,VP}
S



Example sentences

(0.5) S  NPS VPS

(0.5) S  NPP VPP
(1.0) VPS  VS NPS

(1.0) VPP  VP NPP

(0.7) NPS  PROS
(0.3) NPS  D NS

(0.7) NPP  PROP
(0.3) NPP  D NP 

(0.3) PROS  he
(0.3) PROS  she
(0.4) PROS  it
(0.3) PROP  her
(0.3) PROP  him
(0.4) PROP  it
(0.3) D  a
(0.7) D  the
(0.1) NS  A NS
(0.1) NP  A NP

(0.3)   NS  boy
(0.3)   NS  tiger
(0.3)   NS  dog
(0.2)   NP  boy
(0.2)   NP  tiger
(0.2)   NP  dog
(0.15) NP  school
(0.15) NP  house
(0.5)   VS  sees
(0.5)   VS  cleans
(0.5)   VP  see
(0.5)   VP  clean
(1.0)   A  happy

The boys clean the house

He sees the dog

She cleans it

The happy dogs see a tiger



Example sentences

(0.3) PROS  he
(0.3) PROS  she
(0.4) PROS  it
(0.3) PROP  her
(0.3) PROP  him
(0.4) PROP  it
(0.3) D  a
(0.7) D  the
(0.1) NS  A NS
(0.1) NP  A NP

(0.3)   NS  boy
(0.3)   NS  tiger
(0.3)   NS  dog
(0.2)   NP  boy
(0.2)   NP  tiger
(0.2)   NP  dog
(0.15) NP  school
(0.15) NP  house
(0.5)   VS  sees
(0.5)   VS  cleans
(0.5)   VP  see
(0.5)   VP  clean
(1.0)   A  happy

The boys clean the house

He sees the dog

She cleans it

The happy dogs see a tiger

It is relatively easy to expand on this and 
add new types of sentences

(0.5) S  NPS VPS

(0.5) S  NPP VPP
(0.5) VPS  VS NPS

(0.5) VPS  VS

(0.5) VPP  VP NPP
(0.5) VPP  VP 
(0.7) NPS  PROS
(0.3) NPS  D NS

(0.7) NPP  PROP
(0.3) NPP  D NP 

She cleans

The boys see



Example sentences

(0.5) S  NPS VPS

(0.5) S  NPP VPP
(0.4) VPS  VS NPS

(0.2) VPS  VS NPS PP
(0.4) VPS  VS
(0.4) VPP  VP NPP

(0.2) VPP  VP NPP PP
(0.4) VPP  VP

(0.6) NPS  PROS
(0.3) NPS  D NS

(0.6) NPP  PROP
(0.3) NPP  D NP

(0.1) NPS  NPS PP
(0.1) NPP  NPP PP 

(0.5) PP  P NPS

(0.5) PP  P NPP
(0.3) PROS  he
(0.3) PROS  she
(0.4) PROS  it
(0.3) PROP  her
(0.3) PROP  him
(0.4) PROP  it
(0.3) D  a
(0.7) D  the
(0.1) NS  A NS
(0.1) NP  A NP

(0.5) P  with
(0.5) P  behind

(0.3)   NS  boy
(0.3)   NS  tiger
(0.3)   NS  dog
(0.2)   NP  boy
(0.2)   NP  tiger
(0.2)   NP  dog
(0.15) NP  school
(0.15) NP  house
(0.5)   VS  sees
(0.5)   VS  cleans
(0.5)   VP  see
(0.5)   VP  clean
(1.0)   A  happy

The boys behind the school clean the 
house.

She sees the dog behind a tiger

He sees the dog with it



Context free grammars

Yield sentences with hierarchical phrase structure, in which 
phrases can be nestled hierarchically within one another.

S

NPS

VPS

PROS VS

NPS

seesShe

NPS

D NS

manthe

PP

D NS

the

P

with telescope

This is known as a parse tree for that 
sentence, and parsing is the act of 

figuring out the parse trees for a given 
sentence.



Context free grammars

Many sentences are ambiguous - they have multiple possible 
parse trees

S

NPS

VPS

PROS VS

NPS

seesShe

NPS

D NS

manthe

PP

D NS

the

P

with telescope



Context free grammars

Many sentences are ambiguous - they have multiple possible 
parse trees

S

NPS

VPS

PROS VS

NPS

seesShe

NPS

D NS

manthe

PP

D NS

the

P

with telescope

NPS



Context free grammars

This can often be a source of unintentional humour

Don’t let worry kill you – let the church help.

Ingres enjoyed painting his models nude.

Visiting relatives can be boring.

Iraqi head seeks arms

Grandmother of eight makes hole in one

Two sisters reunite after eighteen years at 
checkout counter

Dr. Ruth to talk about sex with newspaper editors



Context free grammars

These sorts of misunderstandings are one of the 
pieces of evidence suggesting that the underlying 

parse trees are psychologically “real”



Using context-free grammars

The probability of a parse is the probability of each of the 
rules used to generate that parse

(0.5) S  NPS VPS
(0.6) NPS  PROS

(0.3) PROS  she
(0.2) VPS  VS NPS PP
(0.5) VS  sees
(0.3) NPS  D NS
(0.7) D  the
(0.3) NS  man
(0.5) PP  P NPS
(0.5) P  with
(0.7) D  the
(0.2) NS  telescope

0.5*0.6*0.3*0.2*0.5*0.3*0.7*0.3*0.5*0.5*0.3*0.7*0.2 = 5.95e-6



Using context-free grammars

(0.5) S  NPS VPS
(0.6) NPS  PROS

(0.3) PROS  she
(0.2) VPS  VS NPS PP
(0.5) VS  sees
(0.3) NPS  D NS
(0.7) D  the
(0.3) NS  man
(0.5) PP  P NPS
(0.5) P  with
(0.7) D  the
(0.2) NS  telescope

If the sentence is ambiguous, you need to add the probabilities 
of each of the possible parses

0.5*0.6*0.3*0.2*0.5*0.3*0.7*0.3*0.5*0.5*0.3*0.7*0.2 +
0.5*0.6*0.3*0.4*0.5*0.3*0.3*0.7*0.3*0.5*0.5*0.3*0.7*0.2 = 9.52e-6 



Using context-free grammars

More massive grammar = more ambiguous sentences.  

Grammars that are typically used in computational linguistics have 
many ambiguous parses.



Using context-free grammars

A PCFG gives some idea of the plausibility of different 
parses; however, this is often not very linguistically 

accurate, since it doesn’t take into account semantics 
(meaning) or local lexical context

5.95e-6 4.07e-6



Using context-free grammars

Real language contains a lot of grammatical mistakes; PCFGs 
can be fairly robust to those, at the price of having many 

incorrect (but very low-probability) rules.

(0.5) S  NPS VPS

(0.6) NPS  PROS
(0.3) PROS  she
(0.4) VPS  VS NPS

(0.5) VS  sees
(0.29) NPS  D NS

(0.01) NPS  D X NS
(0.7) D  the
(0.3) NS  man
(0.5) PP  P NPS
(0.5) P  with
(0.7) D  the
(0.2) NS  telescope
(1.0) X  uh



Using context-free grammars

CFGs are useful because:

They are tractable, and more realistic models of 
language than HMMs or n-grams

But we still use HMMs and n-grams because:

They are much more tractable, and scale better 
with large vocabularies.

In practice, most state-of-the-art stuff combines 
these different techniques to try to take 
advantage of the best aspects of each



Summary

‣ Hidden Markov models: Markov models with hidden states (often 
corresponding to parts of speech) do better than n-grams, although 
still have parameter explosion problems
‣ Forward algorithm: calculate the probability of an observation
‣ Viterbi algorithm: calculate the most likely path through an HMM
‣ Baum-Welch algorithm: figure out the most likely model given a set 
of observations
‣ Context free grammars: Are a much better model for language 
because they have hierarchical phrase structure
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Summary

‣ Hidden Markov models: Markov models with hidden states (often 
corresponding to parts of speech) do better than n-grams, although 
still have parameter explosion problems
‣ Forward algorithm: calculate the probability of an observation
‣ Viterbi algorithm: calculate the most likely path through an HMM
‣ Baum-Welch algorithm: figure out the most likely model given a set 
of observations
‣ Context free grammars: Are a much better model for language 
because they have hierarchical phrase structure

Starting next time: switching gears again to how people use 
data. In particular, we’ll talk about how the informativeness of 
data depends on how it was sampled and the structure of the 

hypotheses (and whether people are aware of this)



Additional references (not required)

‣ Wikipedia entry on CFGs is also pretty good!
‣ Manning, C., & Schutze, H. (1999). Foundations of statistical natural language 
processing. Chapter 11.
‣ Russell, S., & Norvig, P. (1995). Artificial Intelligence: A modern approach. (This one is 
first edition, but all editions have good resources on grammars). Chapter 22

HMMs


