
Computational Cognitive Science

Lecture 18: Hidden Markov
models

Let’s recap a bit first...

‣ For the first weeks in CCS we learned about how people
(or models) can learn concepts that don’t change, or
incorporate an element of time
‣ Those concepts / models were simple ...

Let’s recap a bit first...

‣ For the first weeks in CCS we learned about how people
(or models) can learn concepts that don’t change, or
incorporate an element of time
‣ Those concepts / models were simple ...
‣ ... or more complicated, involving multiple levels of learning

Let’s recap a bit first...

‣ For the first weeks in CCS we learned about how people
(or models) can learn concepts that don’t change, or
incorporate an element of time
‣ Those concepts / models were simple ...
‣ ... or more complicated, involving multiple levels of learning
‣But they all involved learning in stable, unchanging

situations. Lots of real-world learning also involves learning
about change, or about sequences of actions

Learning about sequences

‣One of the main techniques for sequence learning is using n-gram
models, which calculate the probability of an item given the
previous n-1 items. They are used in natural language processing.

Learning about sequences

‣One of the main techniques for sequence learning is using n-gram
models, which calculate the probability of an item given the
previous n-1 items. They are used in natural language processing.
‣ They have a big overfitting problem, due partially to Zipf’s law

Learning about sequences

‣One of the main techniques for sequence learning is using n-gram
models, which calculate the probability of an item given the
previous n-1 items. They are used in natural language processing.
‣ They have a big overfitting problem, due partially to Zipf’s law
‣Solutions to this problem involve smoothing -- taking probability

from the attested n-grams and putting it on the unattested ones

Learning about sequences

‣One of the main techniques for sequence learning is using n-gram
models, which calculate the probability of an item given the
previous n-1 items. They are used in natural language processing.
‣ They have a big overfitting problem, due partially to Zipf’s law
‣Solutions to this problem involve smoothing -- taking probability

from the attested n-grams and putting it on the unattested ones
‣ In simple sequences, people track n-grams of different n,

depending on the complexity of the task

Learning about sequences

‣One of the main techniques for sequence learning is using n-gram
models, which calculate the probability of an item given the
previous n-1 items. They are used in natural language processing.
‣ They have a big overfitting problem, due partially to Zipf’s law
‣Solutions to this problem involve smoothing -- taking probability

from the attested n-grams and putting it on the unattested ones
‣ In simple sequences, people track n-grams of different n,

depending on the complexity of the task
‣ In word segmentation and action sequences, people can form

chunks based on bigram probabilities

dapikutiladoburobidapikupagotutiladopagotudapikuburobi...

Now: More complex sequence learning

‣ Is there another way to address the overfitting problem, which
doesn’t lead to too much error in the other directions?
‣How well do n-gram models explain human language?

Plan for the next two lectures

‣ Today: introduction to HMMs
- Limitations of n-grams applied to language
- Basics of HMMs
‣ Tomorrow: finishing HMMs, and more complex structures

- Calculating the most likely state sequence
- Finding the best HMM for given data
- More complex models of language

Plan for the next two lectures

➡ Today: introduction to HMMs
➡ Limitations of n-grams applied to language
- Basics of HMMs
‣ Tomorrow: finishing HMMs, and more complex structures

- Calculating the most likely state sequence
- Finding the best HMM for given data
- More complex models of language

Learning about syntax

‣ The fundamental issue in syntax is about how sentences are
created. The basic unit is not the word but the morpheme.
‣A morpheme is the smallest unit in language that conveys

meaning

dog s
teach er

dis lik ing

un comfort able

baby

Learning about syntax

Languages vary in their morpheme-per-word ratio.

dog s un comfort ablebaby 2:11:1 3:1

Isolating languages have low ratios (close to 1:1) – that is,
each word tends to convey one unit of meaning. They tend to

have very fixed word order, and to use lots of particles.

Synthetic (or polysynthetic, at the extreme) have high ratios;
one word can convey up to an entire sentence of meaning.

A continuum of languages
Highly isolating

Chinese

Highly synthetic

English

Japanese

Mohawk

Finnish

Washakotya'tawitsherahetkvhta'se
He made the thing that one puts on one's body ugly for her

“He ruined her dress”

Syntax learning

✔ Pink pajamas are awesome
✗ Awesome are pink pajamas
✗ Pink are awesome pajamas
✗ Pajamas are awesome pink
✗ Awesome pink are pajamas

‣Syntax is about how morphemes are combined to make a
sentence. In English, which is more isolating, this is approximated
by the question of how to combine words

Syntax learning

‣Syntax is about how morphemes are combined to make a
sentence. In English, which is more isolating, this is approximated
by the question of how to combine words

‣What are the representations used to generate grammatical
sentences? How are they learned?

Using n-grams as models of syntax

happy

boythe eats potatoes

hot dogs

ice cream

dog0.2
0.4

0.4

0.1

0.5
0.4

1.0

1.0

0.5

0.1

0.4

S 1.0 E1.0
1.0

1.0

‣Capture the basic idea that words in sentences are produced
(probabilistically) based on the previous word(s)

p(the|S) = 1.0
p(happy|the) = 0.2
p(dog|the) = 0.4

p(boy|the) = 0.4
p(happy|happy) = 0.1
p(dog|happy) = 0.5

p(boy|happy) = 0.4
p(eats|dog) = 1.0
p(eats|boy) = 1.0

…

Using n-grams as models of syntax

happy

boythe eats potatoes

hot dogs

ice cream

dog0.2
0.4

0.4

0.5
0.4

1.0

1.0

0.5

0.1

0.4

S 1.0 E1.0
1.0

1.0

‣Capture the basic idea that words in sentences are produced
(probabilistically) based on the previous word(s)
‣ Is this a good description of language?

The problem with n-gram models of language

‣ Tracking long-distance dependencies requires an explosion in the
size of the grammar

boys
the like to

run
dog 1.0

home
at

swim
S

school
E1.0 1.00.4 0.2 0.5

0.50.80.6

1.0

1.0 1.0

1.0

1.0

The problem with n-gram models of language

‣ Tracking long-distance dependencies requires an explosion in the
size of the grammar

boys
the

like

to
run

dog
homeat

swim
S

school

E1.0

1.0

0.4

0.2

0.5

0.5

0.8

0.6

1.0

1.0

1.0

1.0

home
at

school0.2

0.8

1.0

1.0

likes
1.0

1.0 1.0

The problem with n-gram models of language

‣ Tracking long-distance dependencies requires an explosion in the
size of the grammar

happy boy
girl
dog

the
 a
one

eats
ice cream
hot dogs
candy

either
 if

 or
then

.

The problem with n-gram models of language

‣ Tracking long-distance dependencies requires an explosion in the
size of the grammar

either or

thenif

The problem with n-gram models of language

‣ Tracking long-distance dependencies requires an explosion in the
size of the grammar
‣A long-distance dependency is a relationship between words or

word-parts in a sentence that are separated by other words or
word-parts. There are LOTS of these in every language.

if X then Y
The girls at the school eat peanut butter.

What movie did you want to see?

The problem with n-gram models of language

‣ Tracking long-distance dependencies requires an explosion in the
size of the grammar
‣A long-distance dependency is a relationship between words or

word-parts in a sentence that are separated by other words or
word-parts. There are LOTS of these in every language.
‣ If anything, there are more in less isolated langauges.

la

el muchacho

muchacha

las

los muchachos

muchachas

me

diό

dieron un regalo

pelotauna

algunas pelotas

algunos regalos

me

The problem with n-gram models of language

‣Bottom line: with any reasonably sized vocabulary, Markov models
(n-gram models) would have to be enormously complex to
account for the dependencies between words in human language

‣ This is fundamentally related to the parameter explosion problem
with n-grams of larger n: in reality, most of the probabilities
between any random n words is zero, but we have to (potentially)
represent all of them with n-grams.
‣A model with richer structure might be able to capture the actual

relationships there are without wasting a lot of representational
space.

What richer structure exists for language?

Instead of describing the order of particular words,
describe the order of particular parts of speech

These are things like nouns, verbs, etc.

Different languages vary highly in what parts of speech they
have (indeed, there is no agreed-upon classification scheme

for what makes different items different parts of speech).

Parts of speech
Name Definition Examples
Adjective Modifies a noun by describing it Old, big, scary,

hungry
Adverb Modifies anything other than a

noun
Greatly, happily,
very

Noun Person, place, thing, idea,
quantity

Bob, chair, lecture,
freedom

Verb Expresses action or state of
being

Want, run, think,
put, make

Pronoun Substitutes for a noun where
context gives it meaning

Him, her, it, them,
we

Auxiliary
verb

Helps other verbs, giving
additional information

Be, have, shall, will,
may, can

Conjunction Connects parts of a sentence
together

And, but, if, or, so

Preposition Introduces a certain kind of
phrase, often a location

In, on, around, with,
for

Determiner Modifies a noun by expressing
the reference

A, an, the, that,
this, those

Open class:
easy to add

new
members;

carry a lot of
the content

Closed
class: hard
to add new
members;

carry a lot of
the grammar

Parts of speech

There is a lot of
evidence that we

actually represent and
use parts of speech

Open vs closed class are treated differently

Broca’s
Lower Falls… Maine… Paper. Four hundred tons

a day! And ah… sulphur machines, and ah…
wood… Two weeks and eight hours. Eight hours
… no! Twelve hours, fifteen hours… workin …
workin … workin! Yes, and … ah… sulphur.

Wernicke’s Boy, I’m sweating, I’m awful nervous, you
know, once in a while I get caught up, I
can’t mention the tarripoi, a month ago,
quite a little, I’ve done a lot well, I

impose a lot, while, on the other hand, you
know what I mean, I have to run around, look
it over, trebbin and all that sort of stuff.

‣They are disrupted differently in different kinds of aphasia
(brain damage)

Open vs closed class are treated differently

‣They are disrupted differently in different kinds of aphasia
(brain damage)
‣Children’s first words are almost always open class

Mummy
Want

Cookie

Doggie
Up

Juice

Open vs closed class are treated differently

‣They are disrupted differently in different kinds of aphasia
(brain damage)
‣Children’s first words are almost always open class
‣Closed-class words are the ones that second-language

learners have the most difficulty with

Parts of speech are psychologically real

‣Children learn something about them quite early

For instance, 14-month-olds generalise differently depending on if
something is a noun or an adjective

“This is a
blicket”

“This is not a
blicket”

Find a blicket

“This is
blickish”

“This is not
blickish”

Find the blickish one

Parts of speech are psychologically real

‣Children learn something about them quite early
‣When people make production errors they often involve

substituting words (but the same part of speech) for each
other -- rarely words across parts of speech

‣ Socrates died from an overdose of wedlock
‣ Columbus was a great navigator who discovered
America while cursing about the Atlantic
‣ The couple took the vowels of marriage
‣ We had pot luck supper in our church, then
prayer and medication followed

A grammar over parts of speech

Instead of this…

A grammar over parts of speech

you have this!

det noun

adj

verb
0.2

0.8

0.1

0.9

1.01.0S

pro

0.3

0.7
1.0

E

(0.5) verb  eats
(0.5) verb  runs
(0.3) pro  he
(0.3) pro  she
(0.4) pro  it
(0.7) det  the
(0.3) det  a
(0.4) noun  boy
(0.4) noun  dog
(0.2) noun  tiger
(1.0) adj  happy

This is a Hidden Markov Model (HMM)

Hidden states (and
associated probabilities)

Observations (and
associated probabilities)

Plan for the next two lectures

➡ Today: introduction to HMMs
- Limitations of n-grams applied to language
➡ Basics of HMMs
‣ Tomorrow: finishing HMMs, and more complex structures

- Calculating the most likely state sequence
- Finding the best HMM for given data
- More complex models of language

tt-1t-2 t+1

the old man was

HMMs: The basics

variables Xt = word at time t
states S = {the, old, man, was, ...}

tt-1t-2 t+1
the old man was

‣ A Markov model looks like this:

det adj n aux

‣ A Hidden Markov model: same idea, but with hidden states

Xt = part of speech at time t
states S = {det, adj, n, aux, ...}

Yt = word at time t
observations O = {the, old, man, ...}

HMMs: The basics

Xt-1 Xt Xt+1

yt+1ytyt-1

Each x is a
state S

Each y is an
observation O

HMMs: The basics

Probability of transitioning
from state si to state sj

Probability of emitting
symbol ok from state si

Hidden states

Observations

Actual series of states
generated

Actual observations

HMMs: The basics

People use HMMs for all sorts of things (not just language)

Language: Approximations to grammars
Speech recognition
Handwriting recognition
Part-of-speech tagging

Other: Music
Mutation rates in biology
Protein structure / folding
Financial system analysis

A non-linguistic example

You are a mighty warrior named Mitee. You have been sent on a
quest to kill a dragon in its cave. You want to catch it while it is
asleep or not paying attention, but since it is in a cave you can’t
observe that directly. Instead, you can only hear the sounds it

makes. How do you decide when to enter the cave?

Snort, grumble
grumble

A non-linguistic example

States S = {asleep, calm, angry, hungry}
Outputs O = {roar, zzz, snort, grumble}

State transition matrix A:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble
Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Output symbol matrix B:

Initial state probabilities Π:
Asleep Calm Angry Hungry
0.3 0.3 0.2 0.2

Generating output from the model

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:

- Generate observation given
transition matrix B from current state

- Generate state for the next time
based on transition matrix A
between states

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Output symbol matrix B:

Generating output from the model

➡ Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:

- Generate observation given
transition matrix B from current state

- Generate state for the next time
based on transition matrix A
between states

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Output symbol matrix B:

Generating output from the model

zzz

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:
➡ Generate observation given

transition matrix B from current state
- Generate state for the next time

based on transition matrix A
between states

Initial state probabilities Π:

State transition matrix A:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Output symbol matrix B:

Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

Generating output from the model

zzz

Initial state probabilities Π:

State transition matrix A:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Output symbol matrix B:

Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:

- Generate observation given
transition matrix B from current state

➡ Generate state for the next time
based on transition matrix A
between states

Generating output from the model

zzz grumble

Initial state probabilities Π:

State transition matrix A:

Output symbol matrix B:

Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry
Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:
➡ Generate observation given

transition matrix B from current state
- Generate state for the next time

based on transition matrix A
between states

A linguistic example

States S = {noun, verb, det, pro, adj, {*}}
Outputs O = {boy, dog, tiger, eats, runs, the, a, it, she, he, happy}

Noun Verb Det Pro Adj *
Noun 0.0 1.0 0.0 0.0 0.0 0.0
Verb 0.0 0.0 0.0 0.0 0.0 1.0
Det 0.8 0.0 0.0 0.0 0.2 0.0
Pro 0.0 1.0 0.0 0.0 0.0 0.0
Adj 0.9 0.0 0.0 0.0 0.1 0.0

He Dog Tiger Eats Runs
Noun 0.0 0.4 0.2 0.0 0.0
Verb 0.0 0.0 0.0 0.5 0.5
Det 0.0 0.0 0.0 0.0 0.0
Pro 0.3 0.0 0.0 0.0 0.0
Adj 0.0 0.0 0.0 0.0 …

Noun Verb Det Pro Adj *
0.0 0.0 0.3 0.7 0.0 0.0

End state
symbol

State transition matrix A: Output symbol matrix B:

Initial state probabilities Π:

Generating output from the model
Initial state probabilities Π:

State transition matrix A:

Output symbol matrix B:

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:

- Generate observation given
transition matrix B from current state

- Generate state for the next time
based on transition matrix A
between states

Noun Verb Det Pro Adj *
Noun 0.0 1.0 0.0 0.0 0.0 0.0
Verb 0.0 0.0 0.0 0.0 0.0 1.0
Det 0.8 0.0 0.0 0.0 0.2 0.0
Pro 0.0 1.0 0.0 0.0 0.0 0.0
Adj 0.9 0.0 0.0 0.0 0.1 0.0

He Dog Tiger Eats Runs
Noun 0.0 0.4 0.2 0.0 0.0
Verb 0.0 0.0 0.0 0.5 0.5
Det 0.0 0.0 0.0 0.0 0.0
Pro 0.3 0.0 0.0 0.0 0.0
Adj 0.0 0.0 0.0 0.0 …

Noun Verb Det Pro Adj *
0.0 0.0 0.3 0.7 0.0 0.0

Generating output from the model
Initial state probabilities Π:

State transition matrix A:

Output symbol matrix B:

Noun Verb Det Pro Adj *
Noun 0.0 1.0 0.0 0.0 0.0 0.0
Verb 0.0 0.0 0.0 0.0 0.0 1.0
Det 0.8 0.0 0.0 0.0 0.2 0.0
Pro 0.0 1.0 0.0 0.0 0.0 0.0
Adj 0.9 0.0 0.0 0.0 0.1 0.0

Noun Verb Det Pro Adj *
0.0 0.0 0.3 0.7 0.0 0.0

➡ Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:

- Generate observation given
transition matrix B from current state

- Generate state for the next time
based on transition matrix A
between states

He Dog Tiger Eats Runs
Noun 0.0 0.4 0.2 0.0 0.0
Verb 0.0 0.0 0.0 0.5 0.5
Det 0.0 0.0 0.0 0.0 0.0
Pro 0.3 0.0 0.0 0.0 0.0
Adj 0.0 0.0 0.0 0.0 …

Generating output from the model
Initial state probabilities Π:

State transition matrix A:

Output symbol matrix B:

he

Noun Verb Det Pro Adj *
Noun 0.0 1.0 0.0 0.0 0.0 0.0
Verb 0.0 0.0 0.0 0.0 0.0 1.0
Det 0.8 0.0 0.0 0.0 0.2 0.0
Pro 0.0 1.0 0.0 0.0 0.0 0.0
Adj 0.9 0.0 0.0 0.0 0.1 0.0

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:
➡ Generate observation given

transition matrix B from current state
- Generate state for the next time

based on transition matrix A
between states

Noun Verb Det Pro Adj *
0.0 0.0 0.3 0.7 0.0 0.0

He Dog Tiger Eats Runs
Noun 0.0 0.4 0.2 0.0 0.0
Verb 0.0 0.0 0.0 0.5 0.5
Det 0.0 0.0 0.0 0.0 0.0
Pro 0.3 0.0 0.0 0.0 0.0
Adj 0.0 0.0 0.0 0.0 …

Generating output from the model
Initial state probabilities Π:

State transition matrix A:

Output symbol matrix B:

he

Noun Verb Det Pro Adj *
Noun 0.0 1.0 0.0 0.0 0.0 0.0
Verb 0.0 0.0 0.0 0.0 0.0 1.0
Det 0.8 0.0 0.0 0.0 0.2 0.0
Pro 0.0 1.0 0.0 0.0 0.0 0.0
Adj 0.9 0.0 0.0 0.0 0.1 0.0

Noun Verb Det Pro Adj *
0.0 0.0 0.3 0.7 0.0 0.0

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:

- Generate observation given
transition matrix B from current state

➡ Generate state for the next time
based on transition matrix A
between states

He Dog Tiger Eats Runs
Noun 0.0 0.4 0.2 0.0 0.0
Verb 0.0 0.0 0.0 0.5 0.5
Det 0.0 0.0 0.0 0.0 0.0
Pro 0.3 0.0 0.0 0.0 0.0
Adj 0.0 0.0 0.0 0.0 …

Generating output from the model
Initial state probabilities Π:

State transition matrix A:

Output symbol matrix B:

he runs
Noun Verb Det Pro Adj *
0.0 0.0 0.3 0.7 0.0 0.0

He Dog Tiger Eats Runs
Noun 0.0 0.4 0.2 0.0 0.0
Verb 0.0 0.0 0.0 0.5 0.5
Det 0.0 0.0 0.0 0.0 0.0
Pro 0.3 0.0 0.0 0.0 0.0
Adj 0.0 0.0 0.0 0.0 …

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:
➡ Generate observation given

transition matrix B from current state
- Generate state for the next time

based on transition matrix A
between states

Noun Verb Det Pro Adj *
Noun 0.0 1.0 0.0 0.0 0.0 0.0
Verb 0.0 0.0 0.0 0.0 0.0 1.0
Det 0.8 0.0 0.0 0.0 0.2 0.0
Pro 0.0 1.0 0.0 0.0 0.0 0.0
Adj 0.9 0.0 0.0 0.0 0.1 0.0

Generating output from the model
Initial state probabilities Π:

State transition matrix A:

Output symbol matrix B:

he runs
Noun Verb Det Pro Adj *
0.0 0.0 0.3 0.7 0.0 0.0

Noun Verb Det Pro Adj *
Noun 0.0 1.0 0.0 0.0 0.0 0.0
Verb 0.0 0.0 0.0 0.0 0.0 1.0
Det 0.8 0.0 0.0 0.0 0.2 0.0
Pro 0.0 1.0 0.0 0.0 0.0 0.0
Adj 0.9 0.0 0.0 0.0 0.1 0.0

‣Pick an initial state proportional
to the initial state probabilities Π
‣At each time t:

- Generate observation given
transition matrix B from current state

➡ Generate state for the next time
based on transition matrix A
between states

He Dog Tiger Eats Runs
Noun 0.0 0.4 0.2 0.0 0.0
Verb 0.0 0.0 0.0 0.5 0.5
Det 0.0 0.0 0.0 0.0 0.0
Pro 0.3 0.0 0.0 0.0 0.0
Adj 0.0 0.0 0.0 0.0 …

Generating output from the model

Generating data is easy: the real power
comes from assuming that some data

was generated by an HMM, and
inferring the probabilities and state

sequences

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do we efficiently compute
how likely a certain observation is?

Example: simple language
How likely are you to see he eats?

Example: Mitee the warrior
How likely are you to see zzz snort?

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do we efficiently compute
how likely a certain observation is?
‣Given a sequence of observations Y and a model M, how

do we infer the state sequence that best explains the
observations?

Example: Mitee the warrior
Makes the observations on the right

What were the most likely moods of
the dragon at each point?

zzz snort zzz zzz
zzz snort snort
grumble roar

grumble

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do we efficiently compute
how likely a certain observation is?
‣Given a sequence of observations Y and a model M, how

do we infer the state sequence that best explains the
observations?

Example: Language
You hear the following sentence

What were the parts of speech at
each point?

they run to the
park

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do we efficiently compute
how likely a certain observation is?
‣Given a sequence of observations Y and a model M, how

do we infer the state sequence that best explains the
observations?
‣Given an observation sequence Y and a space of possible

models found by varying the model parameters M =
(A,B,Π), how do we find the model that best explains the
observed data?

Example: language
This time, you don’t know which words correspond to which parts
of speech: you have to infer the transition probabilities A, B, and Π

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do
we efficiently compute how likely a
certain observation is?
‣Given a sequence of observations Y

and a model M, how do we infer the
state sequence that best explains the
observations?
‣Given an observation sequence Y and

a space of possible models found by
varying the model parameters M =
(A,B,Π), how do we find the model
that best explains the observed data?

* You should be able to implement this; ** You don’t need to be able to implement this

Baum-Welch**
algorithm

Forward*
algorithm

Viterbi*
algorithm

Summary

‣Because of the problem of long-distance dependencies,
Markov models are not good models of language: they
need to be too large to capture its regularities

Summary

‣Because of the problem of long-distance dependencies,
Markov models are not good models of language: they
need to be too large to capture its regularities
‣Grammars that incorporate parts of speech can be useful

for greatly minimising the size of the grammar required

Summary

‣Because of the problem of long-distance dependencies,
Markov models are not good models of language: they
need to be too large to capture its regularities
‣Grammars that incorporate parts of speech can be useful

for greatly minimising the size of the grammar required
‣Hidden Markov models, which involve hidden states that

generate observations, can capture parts of speech

tt-1t-2 t+1

the old man was

det adj n aux

Summary

‣Because of the problem of long-distance dependencies,
Markov models are not good models of language: they
need to be too large to capture its regularities
‣Grammars that incorporate parts of speech can be useful

for greatly minimising the size of the grammar required
‣Hidden Markov models, which involve hidden states that

generate observations, can capture parts of speech
‣We can use such models to generate sequences of

observations in both linguistic and non-linguistic contexts

Additional references (not required)

‣ Wikipedia entry on HMMs is pretty good!
‣ Manning, C., & Schutze, H. (1999). Foundations of statistical natural language
processing. Chapter 9: Markov models.
‣ Russell, S., & Norvig, P. (1995). Artificial Intelligence: A modern approach. (This one is
first edition, but all editions have good resources on HMMs).

HMMs

‣ Booth, A., & Waxman, S. (2003). Mapping words to the world in infancy: Infants’
expectations for count nouns and adjectives. Journal of Cognition and
Development 4: 357-381.

Parts of speech

