
Computational Cognitive Science

Lecture 16 and 17: Sequential 
learning with n-grams



Plan for the lectures

‣ Yesterday: a simple model for sequence learning (n-grams)
- Application to natural language processing

➡ Today: n-gram models
- Description of the approach
- The problem of overfitting
➡ A solution to the problem of overfitting
- Some applications
‣After mid-semester break: extending n-grams (HMMs)

- What about more complex structure?
- Computing likelihood of observations
- Inferring the hidden state sequence
- Finding the best HMM (if time)



A solution to the problem

There are many possible solutions. All of them 
generally involve moving some of the probability 
mass from the n-grams in the training set to all 
of the “unseen” ones. This is called smoothing.

Requires that we know the total possible vocabulary 
size in advance.



Smoothing: The basic idea



Smoothing: The basic idea



Two equations for smoothing

1. Smooth the probability of a word or series of words

2. Smooth the probability of a word given a previous word or 
series of words

‣As before, there are two distinct things we could calculate, and 
thus two slightly different ways we can smooth them

The equations are distinct (except in the unigram case)



Two equations for smoothing

1. Smooth the probability of a word or series of words

2. Smooth the probability of a word given a previous word or 
series of words

‣As before, there are two distinct things we could calculate, and 
thus two slightly different ways we can smooth them

The equations are distinct (except in the unigram case)

There are lots of ways to do 
both of these. We’ll be 

talking about one (Laplace’s 
Law) that applies to both, in 

slightly different ways



Laplace’s Law for p(w1,...,wn)

Count C of times 
w1…wn is in the 

corpus, plus one

N is as before - the total series of n words possible in that corpus. 
B  indicates how many items you are spreading the probability 
mass over (i.e., the number of n-grams possible of that sort). 

Thus B=Vn where V is the vocabulary size

‣Most simplistic, but reasonably useful
‣ Equivalent to a Bayesian prior probability that you have seen each 

possible n-gram once
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Count C of times 
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B  indicates how many items you are spreading the probability 
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possible n-gram λ times
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Lidstone’s Law for p(w1,...,wn)

Count C of times 
w1…wn is in the 
corpus, plus λ

N is as before - the total series of n words possible in that corpus. 
B  indicates how many items you are spreading the probability 
mass over (i.e., the number of n-grams possible of that sort). 

Thus B=Vn where V is the vocabulary size

‣Most simplistic, but reasonably useful
‣ Equivalent to a Bayesian prior probability that you have seen each 

possible n-gram λ times

λ
Bλ

This modified version is known as 
Lidstone’s Law, and can be viewed as a 

linear interpolation between the MLE 
estimate and a uniform prior.



Laplace’s Law for p(w1,...,wn): Unigrams (λ=1)

Train

The old man was 
the man who ate 
the fruit.

P(the) = 3/10 = 0.3
P(man) = 2/10 = 0.2
P(ate) = 1/10 = 0.1
P(old) = 1/10 = 0.1
P(who) = 1/10 = 0.1
P(fruit) = 1/10 = 0.1
P(was) = 1/10 = 0.1
P(lady) = 0/10 = 0

P(quickly) = 0/10 = 0Test

The old lady ate 
the fruit quickly. 

P(the) = 4/19 = 0.21
P(man) = 3/19 = 0.158
P(ate) = 2/19 = 0.105
P(old) = 2/19 = 0.105
P(who) = 2/19 = 0.105
P(fruit) = 2/19 = 0.105
P(was) = 2/19 = 0.105
P(lady) = 1/19 = 0.052

P(quickly) = 1/19 = 0.052

N = 10 (the # of words in the training corpus)
B = 9 (the total vocabulary size, V)

MLE Laplace



Laplace’s Law for p(w1,...,wn): Bigrams (λ=1)

Train

The old man was 
the man who ate 
the fruit.

Test

The old lady ate 
the fruit quickly. 

MLE Laplace
P(the old) = 1/9 = 0.11

P(man was) = 1/9 = 0.11
P(man who) = 1/9 = 0.11

P(old the) = 0/9 = 0
P(fruit was) = 0/9 = 0

P(the old) = 2/(9+81) = 0.022
P(man was) = 2/(9+81) = 0.022
P(man who) = 2/(9+81) = 0.022
P(old the) = 1/(9+81) =  0.011

P(fruit was) = 1/(9+81) = 0.011

N = 9 (the # of bigrams in the training corpus (the old; 
old man; man was; etc))

B = 81 (V2, where V=9). This is because there are 81 
possible bigrams that could be there, each of 

which you have to give 1 count to



Laplace’s Law for p(wn|w1,...,wn)

Essentially the same idea



Laplace’s Law for p(wn|w1,...,wn)

Count C of times 
w1…wn is in the 

corpus, plus one

# of extra things you are spreading probability mass over. In all cases, 
B=V (because you’re adding one extra count for each possible item (of 

which there are V) after each n-1 gram). 

Count C of 
times the n-1-

gram w1…wn-1 is 
in the corpus



Lidstone’s Law for p(wn|w1,...,wn)

Count C of times 
w1…wn is in the 
corpus, plus λ

# of extra things you are spreading probability mass over. In all cases, 
B=V (because you’re adding one extra count for each possible item (of 

which there are V) after each n-1 gram). 

Count C of 
times the n-1-

gram w1…wn-1 is 
in the corpus

λ
Bλ



Laplace’s Law for p(wn|w1,...,wn): Unigrams (λ=1)

Train

The old man was 
the man who ate 
the fruit.

P(the) = 3/10 = 0.3
P(man) = 2/10 = 0.2
P(ate) = 1/10 = 0.1
P(old) = 1/10 = 0.1
P(who) = 1/10 = 0.1
P(fruit) = 1/10 = 0.1
P(was) = 1/10 = 0.1
P(lady) = 0/10 = 0

P(quickly) = 0/10 = 0Test
The old lady ate 
the fruit quickly. 

P(the) = 4/19 = 0.21
P(man) = 3/19 = 0.158
P(ate) = 2/19 = 0.105
P(old) = 2/19 = 0.105
P(who) = 2/19 = 0.105
P(fruit) = 2/19 = 0.105
P(was) = 2/19 = 0.105
P(lady) = 1/19 = 0.052

P(quickly) = 1/19 = 0.052

N = 10 (the # of words in the training corpus)
B = 9 (the total vocabulary size, V)

MLE Laplace

Same as before, since it simplifies to p(w1)



Laplace’s Law for p(wn|w1,...,wn): Bigrams (λ=1)

Train

The old man was 
the man who ate 
the fruit.

Test
The old lady ate 
the fruit quickly. 

MLE Laplace

Same as before, since it simplifies to p(w1)

P(man|the) = 1/3 = 0.33
P(who|man) = 1/2 = 0.5
P(fruit|the) = 1/3 = 0.33

P(ate|who) = 1/1 = 1
P(fruit|man) = 0/3 = 0
P(who|was) = 0/1 = 0
P(lady|old) = 0/1 = 0

P(man|the) = (1+1)/(3+9) = 0.16
P(who|man) = (1+1)/(2+9) = 0.18
P(fruit|the) = (1+1)/(3+9) = 0.16
P(ate|who) = (1+1)/(1+9) = 0.2

P(fruit|man) = (0+1)/(3+9) = 0.08
P(who|was) = (0+1)/(1+9) = 0.1
P(lady|old) = (0+1)/(1+9) = 0.1

B = V



Laplace’s Law 

It is very easy to add to the code we’ve already done: tally the 
counts as before, but add one to each

Process the code (remove commas, add start/end symbols
Create array of bigrams with 1 each of size nwords x nwords
Create a wordlist of all words in both of the corpora, each 

with an index i

For each word w = 2 to end of corpus A (the base corpus)
	
 Find the index iw of that word in the wordlist
	
 Find the index iw-1 of the previous word in the wordlist
	
 Add 1 count to bigram array at (iw-1,iw)
End

Raw probabilities: 
Normalise bigram array by sum of total counts

Conditional probabilities: 
Normalise bigram array by counts of each individual word



Laplace’s Law 

It is very easy to add to the code we’ve already done: tally the 
counts as before, but add one to each

Process the code (remove commas, add start/end symbols
Create array of bigrams with λ each of size nwords x nwords
Create a wordlist of all words in both of the corpora, each 

with an index i

For each word w = 2 to end of corpus A (the base corpus)
	
 Find the index iw of that word in the wordlist
	
 Find the index iw-1 of the previous word in the wordlist
	
 Add 1 count to bigram array at (iw-1,iw)
End

Raw probabilities: 
Normalise bigram array by sum of total counts

Conditional probabilities: 
Normalise bigram array by counts of each individual word



How well does this do?

‣A lot better. However, now it generally puts a lot of probability 
mass on the items that never occur in the training corpus.

Counts MLE Laplace

0 0 0.000014

1 0.00392 0.000028

2 0.00784 0.000042

3 0.01176 0.000056

tallies <- getlaplacebigramtallies("weather.txt","weather2.txt")

Raw
Counts MLE Laplace

0 0 0.00374

1 0.60024 0.00743

2 0.68590 0.01112

3 0.42857 0.01465

Conditional



How well does this do?

‣A lot better. However, now it generally puts a lot of probability 
mass on the items that never occur in the training corpus.
‣Changing to a smaller λ (0.5 is often used) improves things

Counts MLE Laplace

0 0 0.000014

1 0.00392 0.000042

2 0.00784 0.000070

3 0.01176 0.000098

tallies <- getlaplacebigramtallies("weather.txt","weather2.txt")

Raw
Counts MLE Laplace

0 0 0.00373

1 0.60024 0.01102

2 0.68590 0.01827

3 0.42857 0.02500

Conditional



How well does this do?

‣A lot better. However, now it generally puts a lot of probability 
mass on the items that never occur in the training corpus.
‣Changing to a smaller λ (0.5 is often used) improves things

In practice, more complicated smoothing techniques are 
used, which add different amounts depending on the 

initial estimates. 

A common form is known as Good-Turing estimation, but 
I will not be spending more time on this. The point was to 
make you aware of the need for smoothing, and how you 

might go about it.



‣ Yesterday: a simple model for sequence learning (n-grams)
- Application to natural language processing

➡ Today: n-gram models
- Description of the approach
- The problem of overfitting
- A solution to the problem of overfitting
➡ Some applications
‣After mid-semester break: extending n-grams (HMMs)

- What about more complex structure?
- Computing likelihood of observations
- Inferring the hidden state sequence
- Finding the best HMM (if time)

Plan for today



n-gram learning in cognitive science

‣So far we’ve been talking about n-grams in the context of 
learning which words follow which other words -- which is 
important
‣But sequence learning is far more general, and other aspects of 

sequence learning are far more simple, so let’s start with those



Let’s start simply

‣Simplest possible use of sequential knowledge: two options, need 
to predict which one is happening next

?
Asking people to explicitly make predictions may be difficult for them, 

and not fully capture the state of their knowledge 



Let’s start simply

‣ Instead, simply ask them to report what symbol they see, and 
record their reaction time

Fast

Pretty fast

Slow



Task details

‣ 2 stimuli, usually the same 
symbol in different sizes (o,O, 
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between 
stimuli (usually 800ms)



Task details

☐

‣ 2 stimuli, usually the same 
symbol in different sizes (o,O, 
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between 
stimuli (usually 800ms)



Task details
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Task details

‣ 2 stimuli, usually the same 
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sometimes different symbols ☐,o)

‣ Two fingers on two buttons
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Task details

o

‣ 2 stimuli, usually the same 
symbol in different sizes (o,O, 
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between 
stimuli (usually 800ms)



Task details

o

‣ 2 stimuli, usually the same 
symbol in different sizes (o,O, 
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between 
stimuli (usually 800ms)



Task details

‣Responses are usually coded as repetitions or alternations

Element Coding

O O O O O R R R R

☐ ☐ ☐ ☐ ☐ R R R R

☐ O ☐ O ☐ A A A A

☐ ☐ O ☐ O R A A A

O O O O ☐ R R R A



Typical response curve

Cho et al., 2012

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Re
ac

tio
n 

tim
e 

(m
s)

most recent



Typical response curve

Cho et al., 2012

Stimuli that fit a pattern 
are faster (and have 

fewer errors)

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Re
ac

tio
n 

tim
e 

(m
s)



Typical response curve

Cho et al., 2012

Violations of a local 
pattern are slower (and 

have more errors)

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Re
ac

tio
n 

tim
e 

(m
s)



Typical response curve

Cho et al., 2012

Repetitions are 
generally slightly faster 

than alternations

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Re
ac

tio
n 

tim
e 

(m
s)

REP ALT



Not all RT curves are typical...
Re

ac
tio

n 
tim

e 
(m

s)

Cho et al, 2002Soetens et al, 1985 Jones et al, 2002

‣1000ms RSI
‣1-1 mapping
‣Two hands

‣800ms RSI
‣1-1 mapping
‣One hand

‣900ms RSI
‣1-many mapping
‣One hand



Can n-gram models explain RT curves?

‣How do we capture forgetting over past events?

‣What level of n? i.e., how many previous items are people 
sensitive to? Does this vary as a function of the number of 
response options?



Capturing forgetting

‣Long-standing evidence suggests that forgetting can be 
captured as an exponential function over time

‣To the n-gram probabilities we therefore add an 
exponential filter with a forgetting rate of λ

P(wn-j,...wn)

st
re

ng
th

 o
f 

m
em

or
y

time

present



Can n-gram models explain RT curves?

‣How do we capture forgetting over past events?

➡ What level of n? i.e., how many previous items are 
people sensitive to? Does this vary as a function of the 
number of response options?



Can n-gram models explain RT curves?

‣Varying n means people track different statistics

unigram: Essentially a reflection of frequency

bigram: Dependency on previous item

P(☐), P(○)

P(☐|☐), P(○|☐), P(☐|○), P(○|○)

trigram: Dependency on previous two items

P(☐|☐☐), P(○|☐☐), P(☐|○☐), P(○|☐○)...



Model predictions

unigram bigram

As is standard, RT is assumed to be inversely proportional to the 
predictive probability of the next element

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A



Jones et al, 2002
Model

Cho et al, 2002
Model

Model predictions

unigram bigram

These fit in with the previous results in an interesting way!

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A



Higher order = harder to track?

unigram: Only two elements to track

bigram: Four elements to track

P(☐), P(○)

P(☐|☐), P(○|☐), P(☐|○), P(○|○)

trigram: Eight elements to track

P(☐|☐☐), P(○|☐☐), P(☐|○☐), P(○|☐○)...

In general, the number of elements increases proportional 
to Kn, where K is the number of sequence elements and 
n is the order of transition probabilities being considered



Higher order = harder to track?

This implies that with more elements, it might be increasingly 
harder to track all of the transition probabilities

This 
study was 
1-many

And 
this 
was 
1-1

Prediction: if there are three (rather than two) elements, it 
should be more difficult to track bigrams



Experiment: three response options

Three elements with no natural ordering

Correspond to three buttons on response box (top, left, right)



Predictions of different n-gram models

Grouped data 
into 41 

equivalence 
classes

e.g.: AABBC = 
{11223; 11332; 
22113; 22331; 

33112; 332211} unigram
bigram

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B B B B B B B B B B 
A A A A A B B B B B B B B B A A A A A A A A A B B B B B B B B B C C C C C C C C C
A A B B B A A A B B B C C C A A A B B B C C C A A A B B B C C C A A A B B B C C C
A B A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C 



Human performance

Much better 
match to the 

unigram model!

Experiment
Model

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B B B B B B B B B B 
A A A A A B B B B B B B B B A A A A A A A A A B B B B B B B B B C C C C C C C C C
A A B B B A A A B B B C C C A A A B B B C C C A A A B B B C C C A A A B B B C C C
A B A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C 



Quantifying model fits

‣ Calculated log-likelihood values of model fits for datasets that 
varied the response options

‣ Bigram model fits best when there are two response options, 
unigram when there are three

‣ Consistent with the idea that which statistics people track 
depends on their complexity



Quantifying model fits

‣ Calculated log-likelihood values of model fits for datasets that 
varied the response options

‣ Bigram model fits best when there are two response options, 
unigram when there are three

‣ Consistent with the idea that which statistics people track 
depends on their complexity

‣ But this task is extremely simple! Do people track and notice 
transition probabilities (bigrams or more) or frequencies (unigrams) 
when the elements and domain is more complicated?



The problem of word segmentation

Spaces between words can’t be heard!

Whatyouhearsoundsmorelikethisallthetime; 
yourbrainjustmakesthespacesforyou.

“There are no silences between words”



The problem of word segmentation

... This is sometimes the root of amusing mistakes

I am heyv!

I don’t want to go to your ami.

The ants are my friends, they’re blowing in the wind.

Daddy, when you go tinkle you’re an eight, and when I 
go tinkle I’m an eight, right?



How do you decide where to put the spaces?

i   ng

0.4

ng   th e
ng   a

ng   b  a

ng   …

0.03

0.05

0.007

“Singasong”

One idea: bigram transition probabilities

“Sing” is therefore more likely to 
be a word than “inga”



More precisely...

The old man was the man who ate the fruit.

ðə ðə ðə

ð ə p(əә|ð) = 1.0

n

mæn

æm
æ

mæn

p(æ|m) = 1.0
p(n|æ) = 1.0

uːeɪ

eɪuː

uːt

p(eɪ|uː) = 0.5

probably a word

probably a word

probably not a word



An empirical test on people

Can people segment words in an artificial language 
simply on the basis of transition probabilities?

2 minutes of 
continuous speech

four 3-syllable 
nonsense words

dapikutiladoburobidapikupagotutiladopagotudapikuburobi...



An empirical test on people

Test by seeing if they recognise the difference between 
partial words and non-words (defined as such based 

only on their bigram transition probabilities)

dapikutiladoburobidapikupagotutiladopagotudapikuburobi...

dapi: partial word p(pi|da) = 1.0

kupa: non-word p(pa|ku) = 0.33



An empirical test on people
Habituate infants to a long stream of this speech.

After they are bored, play either a speech stream containing 
partial words like dapi or non-words like kupa.



An empirical test on people
Infants listened longer (indicating surprise) to the non-words. Since 

they differed only according to their bigram probabilities, this 
suggests that infants track those probabilities.

M
ea

n 
lis

te
ni

ng
 t

im
e 

(s
ec

)

Partial words Non-words

6

7

8

*



How well does this scale?
How good of a segmentation does a bigram model create, given 

a corpus of typical child-directed speech?

yuwanttusiD6bUk
&nd6dOgi
yuwanttulUk&tDIs
lUk&tDIs
h&v6drINk
tekItQt

Corpus of child-directed speech transcribed into an 
ASCII version of phonetic notation

you want to see the book?
and a doggie!
you want to look at this?
look at this!
have a drink
take it out



How well does this scale?
How good of a segmentation does a bigram model create, given 

a corpus of typical child-directed speech?

Phoneme frequency Phoneme bigram frequency

Ph
on

em
e 

fre
qu

en
cy



How well does this scale?
Still sparse, but much less so - phoneme frequencies do not 

follow Zipf’s law!



How well does this scale?

The high-frequency bigrams seem to be reasonable words or 
word parts

High frequency bigrams Interpretation

It (8) It

WA (4) Beginning of ‘what’

At (4) End of ‘what’

lU (4) Beginning of ‘look’

Uk (4) End of ‘look’

Yu (4) Yu



How well does this scale?

High frequency bigrams Interpretation

It (8) It

WA (4) Beginning of ‘what’

At (4) End of ‘what’

lU (4) Beginning of ‘look’

Uk (4) End of ‘look’

Yu (4) Yu

We still need to be able to go from knowing the transition 
probabilities to knowing where to put the word breaks 



Where to put the word breaks?

Idea: Set some threshold based on transition probability. 
E.g., everything with a transition probability above λ is a 
word break.

Problem: How do 
you decide what 
the threshold is? 
Very dependent 
on the corpus.



Where to put the word breaks?

This will yield a likelihood and prior we can use to 
evaluate different segmentations of the corpus.

Instead, let’s do this in a more principled fashion by 
defining how a corpus might have been generated.



Where to put the word breaks?

Instead, let’s do this in a more principled fashion by 
defining how a corpus might have been generated.

Reverse engineer:

1) Assume sentences are 
constructed by drawing words 
one-by-one from a set of 
possible words 

2) The n-gram model specifies how 
many previous words guide 
which word you draw

e.g., bigram



Where to put the word breaks?

Implies that, given some input (and the knowledge of 
what order of n-gram model was used to generate 
it*), our task is to figure out what the words are.

* Later, we’ll relax that constraint. For now, let’s assume it is a unigram model.

yuwanttusiD6bUk#
lUkD*z6b7wIThIzh&t#

&nd6dOgi#
yuwanttulUk&tDIs#

lUk&tDIs#
h&v6drINk#

okenQ#
WAtsDIs#
WAtsD&t#
WAtIzIt#

lUkk&nyutekItQt#
…

unigram



Where to put the word breaks?

Algorithm for generating a corpus:
Repeat U times
     Repeat until $ is generated
         Generate the next word w with 
   probability Pw(w)
 Generate $ with probability P$

# of utterances in 
the corpus

End-of-utterance symbol

As each word is generated, it is concatenated onto the 
previously generated sequence of words.



Where to put the word breaks?

The likelihood of generating words w1…wn as a single 
utterance is therefore given by:

For n-1 of the words, the 
probability of generating them 

and not $

For the nth word, the 
probability of generating it 

and $



Where to put the word breaks?

Venkataraman, 2001

This allows us to calculate 
the probability of 
generating the 

unsegmented utterance u

It is found by summing over all the 
possible sequences of words that 
could be concatenated to form u



Problems with this?

Venkataraman, 2001

Maximising P(u) in this case will favour the answer that 
says the entire corpus consists of only one word

Why?

Example: If u = bax and 
your only word is bax there 

is only one way to get a 
corpus of that length:

bax

Example: If u = bax and 
your words are b and ax, 
you could have gotten:

bax
axb
bbb

So P(u) = 1 So P(u) = ⅓



Problems with this?

Maximising P(u) in this case will favour the answer that 
says the entire corpus consists of only one word

Why?

This hugely overfits the data and is not the 
solution we want



Solution

We need to have some “penalty” that favours simpler hypotheses: 
an ideal balance between fewer words, and smaller words

How about a 
prior?



What kind of prior might that be?

Well, really, what else?



Summary of the model

Find the best word segmentation: Search over the possible 
sets of words, and pick the one with the highest posterior 

probability. 

(Likelihood is 0 if it cannot generate that corpus, 1 if it can; 
so in this case, it all comes down to the prior)

This process defines the prior probability, given an 
assumption about how the order is generated (e.g., 
unigram or bigram), of a set of words for the corpus 



Results: unigram

Does reasonably well, but tends to undersegment

youwant to see thebook
look there’s aboy with his hat

and adoggie
you wantto lookatthis

lookatthis
havea drink
what’sthis
what’sthat
whatisit

look canyou take itout
take thedoggie out

ithink it will comeout
…

Unigram



Results: bigram

Removes much of the undersegmentation problem

youwant to see thebook
look there’s aboy with his hat

and adoggie
you wantto lookatthis

lookatthis
havea drink
what’sthis
what’sthat
whatisit

look canyou take itout
take thedoggie out

ithink it will comeout
…

you want to see the book
look there’s a boy with his hat

and a doggie
you want to lookat this

lookat this
have a d rink
what’s this
what’s that
what isit

look canyou take itout
take thedoggie out

i think it will comeout
…

Unigram Bigram



Results: compare to human performance

1) Teach undergrads 
an artificial language

badipagutivuzubadilakiduvuzu…

2) Test them on the 
words in it
badi or tivu?

3) Track their 
performance



Results: compare to human performance

Model performance matches human performance 
quite highly

Sentence length

Pe
rf

or
m

an
ce
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Summary so far

‣ We’ve seen that people seem to track different statistics 
depending on the complexity

‣ There is evidence that even infants can track bigram transition 
probabilities and use them for word segmentation

‣ A model that uses these probabilities, plus a prior favouring few 
words, creates a good segmentation of child-directed speech

you want to see the book
look there’s a boy with his hat

and a doggie
you want to lookat this

lookat this
have a d rink
what’s this
what’s that
what isit

look canyou take itout
take thedoggie out

i think it will comeout
…



Summary so far

‣ We’ve seen that people seem to track different statistics 
depending on the complexity

‣ There is evidence that even infants can track bigram transition 
probabilities and use them for word segmentation

‣ A model that uses these probabilities, plus a prior favouring few 
words, creates a good segmentation of child-directed speech

Are people only really good at tracking bigram statistics over lots 
of things in the case of language?



NOTE: THE ACTUAL LECTURE STOPPED 
HERE. THE REMAINING SLIDES ARE NOT 
EXAMINABLE; I’M JUST INCLUDING THEM 

IN CASE YOU’RE CURIOUS
  - AMY

(also, of course, the slides i skipped over 
earlier are also not examinable)



Summary so far

Are people only really good at tracking bigram statistics over lots 
of things in the case of language?

Probably not; one large difference between the first experiment 
and the word segmentation ones is that there were actual large 
differences in bigram probability in the word segmentation ones

But in any case we can test this!



Bigram probabilities in action sequences

Instead of concatenating syllables together to create words, 
concatenate actions together to create action sequences

High prob within sequence:

P(poke|stack)
P(drink|poke)
… etc …

Low prob between sequences:

P(stack|rattle)
P(insert|peek)
… etc …



Bigram probabilities in action sequences

Non-actions: reordered by rearranging within action sequences

Adults watched the videos, and were told they were taking a 
test of memory. Three types of test trials:

Actions: reordered parts of the video, but kept action sequences together



Bigram probabilities in action sequences

Part-actions: reordered by concatenating actions that overlapped boundaries

Adults watched the videos, and were told they were taking a 
test of memory. Three types of test trials:



Bigram probabilities in action sequences

They could discriminate actions from non-actions or part-actions

Compared 
to non-
actions

Compared 
to part-
actions

Ac
cu

ra
cy



Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given 
the previous n-1 items, are widely used in natural language 
processing to address the problem of sequence learning.
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Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given 
the previous n-1 items, are widely used in natural language 
processing to address the problem of sequence learning.
‣Due to Zipf’s law, they have a big overfitting problem
‣Solutions to this problem involve smoothing -- taking probability 

from the attested n-grams and putting it on the unattested ones
‣ In simple sequences, people track n-grams of different n, 

depending on the complexity of the task
‣ In word segmentation and action sequences, people can form 

chunks based on bigram probabilities

dapikutiladoburobidapikupagotutiladopagotudapikuburobi...



Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given 
the previous n-1 items, are widely used in natural language 
processing to address the problem of sequence learning.
‣Due to Zipf’s law, they have a big overfitting problem
‣Solutions to this problem involve smoothing -- taking probability 

from the attested n-grams and putting it on the unattested ones
‣ In simple sequences, people track n-grams of different n, 

depending on the complexity of the task
‣ In word segmentation and action sequences, people can form 

chunks based on bigram probabilities
‣After mid-semester break: more complicated sequence learning, 

and then an analysis of the kind of information people use
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Zipf’s law for phonemes
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Word segmentation


