
Computational Cognitive Science

Lecture 16 and 17: Sequential
learning with n-grams

Plan for the lectures

‣ Yesterday: a simple model for sequence learning (n-grams)
- Application to natural language processing

➡ Today: n-gram models
- Description of the approach
- The problem of overfitting
➡ A solution to the problem of overfitting
- Some applications
‣After mid-semester break: extending n-grams (HMMs)

- What about more complex structure?
- Computing likelihood of observations
- Inferring the hidden state sequence
- Finding the best HMM (if time)

A solution to the problem

There are many possible solutions. All of them
generally involve moving some of the probability
mass from the n-grams in the training set to all
of the “unseen” ones. This is called smoothing.

Requires that we know the total possible vocabulary
size in advance.

Smoothing: The basic idea

Smoothing: The basic idea

Two equations for smoothing

1. Smooth the probability of a word or series of words

2. Smooth the probability of a word given a previous word or
series of words

‣As before, there are two distinct things we could calculate, and
thus two slightly different ways we can smooth them

The equations are distinct (except in the unigram case)

Two equations for smoothing

1. Smooth the probability of a word or series of words

2. Smooth the probability of a word given a previous word or
series of words

‣As before, there are two distinct things we could calculate, and
thus two slightly different ways we can smooth them

The equations are distinct (except in the unigram case)

There are lots of ways to do
both of these. We’ll be

talking about one (Laplace’s
Law) that applies to both, in

slightly different ways

Laplace’s Law for p(w1,...,wn)

Count C of times
w1…wn is in the

corpus, plus one

N is as before - the total series of n words possible in that corpus.
B indicates how many items you are spreading the probability
mass over (i.e., the number of n-grams possible of that sort).

Thus B=Vn where V is the vocabulary size

‣Most simplistic, but reasonably useful
‣ Equivalent to a Bayesian prior probability that you have seen each

possible n-gram once

Lidstone’s Law for p(w1,...,wn)

Count C of times
w1…wn is in the
corpus, plus λ

N is as before - the total series of n words possible in that corpus.
B indicates how many items you are spreading the probability
mass over (i.e., the number of n-grams possible of that sort).

Thus B=Vn where V is the vocabulary size

‣Most simplistic, but reasonably useful
‣ Equivalent to a Bayesian prior probability that you have seen each

possible n-gram λ times

λ
Bλ

Lidstone’s Law for p(w1,...,wn)

Count C of times
w1…wn is in the
corpus, plus λ

N is as before - the total series of n words possible in that corpus.
B indicates how many items you are spreading the probability
mass over (i.e., the number of n-grams possible of that sort).

Thus B=Vn where V is the vocabulary size

‣Most simplistic, but reasonably useful
‣ Equivalent to a Bayesian prior probability that you have seen each

possible n-gram λ times

λ
Bλ

This modified version is known as
Lidstone’s Law, and can be viewed as a

linear interpolation between the MLE
estimate and a uniform prior.

Laplace’s Law for p(w1,...,wn): Unigrams (λ=1)

Train

The old man was
the man who ate
the fruit.

P(the) = 3/10 = 0.3
P(man) = 2/10 = 0.2
P(ate) = 1/10 = 0.1
P(old) = 1/10 = 0.1
P(who) = 1/10 = 0.1
P(fruit) = 1/10 = 0.1
P(was) = 1/10 = 0.1
P(lady) = 0/10 = 0

P(quickly) = 0/10 = 0Test

The old lady ate
the fruit quickly.

P(the) = 4/19 = 0.21
P(man) = 3/19 = 0.158
P(ate) = 2/19 = 0.105
P(old) = 2/19 = 0.105
P(who) = 2/19 = 0.105
P(fruit) = 2/19 = 0.105
P(was) = 2/19 = 0.105
P(lady) = 1/19 = 0.052

P(quickly) = 1/19 = 0.052

N = 10 (the # of words in the training corpus)
B = 9 (the total vocabulary size, V)

MLE Laplace

Laplace’s Law for p(w1,...,wn): Bigrams (λ=1)

Train

The old man was
the man who ate
the fruit.

Test

The old lady ate
the fruit quickly.

MLE Laplace
P(the old) = 1/9 = 0.11

P(man was) = 1/9 = 0.11
P(man who) = 1/9 = 0.11

P(old the) = 0/9 = 0
P(fruit was) = 0/9 = 0

P(the old) = 2/(9+81) = 0.022
P(man was) = 2/(9+81) = 0.022
P(man who) = 2/(9+81) = 0.022
P(old the) = 1/(9+81) = 0.011

P(fruit was) = 1/(9+81) = 0.011

N = 9 (the # of bigrams in the training corpus (the old;
old man; man was; etc))

B = 81 (V2, where V=9). This is because there are 81
possible bigrams that could be there, each of

which you have to give 1 count to

Laplace’s Law for p(wn|w1,...,wn)

Essentially the same idea

Laplace’s Law for p(wn|w1,...,wn)

Count C of times
w1…wn is in the

corpus, plus one

of extra things you are spreading probability mass over. In all cases,
B=V (because you’re adding one extra count for each possible item (of

which there are V) after each n-1 gram).

Count C of
times the n-1-

gram w1…wn-1 is
in the corpus

Lidstone’s Law for p(wn|w1,...,wn)

Count C of times
w1…wn is in the
corpus, plus λ

of extra things you are spreading probability mass over. In all cases,
B=V (because you’re adding one extra count for each possible item (of

which there are V) after each n-1 gram).

Count C of
times the n-1-

gram w1…wn-1 is
in the corpus

λ
Bλ

Laplace’s Law for p(wn|w1,...,wn): Unigrams (λ=1)

Train

The old man was
the man who ate
the fruit.

P(the) = 3/10 = 0.3
P(man) = 2/10 = 0.2
P(ate) = 1/10 = 0.1
P(old) = 1/10 = 0.1
P(who) = 1/10 = 0.1
P(fruit) = 1/10 = 0.1
P(was) = 1/10 = 0.1
P(lady) = 0/10 = 0

P(quickly) = 0/10 = 0Test
The old lady ate
the fruit quickly.

P(the) = 4/19 = 0.21
P(man) = 3/19 = 0.158
P(ate) = 2/19 = 0.105
P(old) = 2/19 = 0.105
P(who) = 2/19 = 0.105
P(fruit) = 2/19 = 0.105
P(was) = 2/19 = 0.105
P(lady) = 1/19 = 0.052

P(quickly) = 1/19 = 0.052

N = 10 (the # of words in the training corpus)
B = 9 (the total vocabulary size, V)

MLE Laplace

Same as before, since it simplifies to p(w1)

Laplace’s Law for p(wn|w1,...,wn): Bigrams (λ=1)

Train

The old man was
the man who ate
the fruit.

Test
The old lady ate
the fruit quickly.

MLE Laplace

Same as before, since it simplifies to p(w1)

P(man|the) = 1/3 = 0.33
P(who|man) = 1/2 = 0.5
P(fruit|the) = 1/3 = 0.33

P(ate|who) = 1/1 = 1
P(fruit|man) = 0/3 = 0
P(who|was) = 0/1 = 0
P(lady|old) = 0/1 = 0

P(man|the) = (1+1)/(3+9) = 0.16
P(who|man) = (1+1)/(2+9) = 0.18
P(fruit|the) = (1+1)/(3+9) = 0.16
P(ate|who) = (1+1)/(1+9) = 0.2

P(fruit|man) = (0+1)/(3+9) = 0.08
P(who|was) = (0+1)/(1+9) = 0.1
P(lady|old) = (0+1)/(1+9) = 0.1

B = V

Laplace’s Law

It is very easy to add to the code we’ve already done: tally the
counts as before, but add one to each

Process the code (remove commas, add start/end symbols
Create array of bigrams with 1 each of size nwords x nwords
Create a wordlist of all words in both of the corpora, each

with an index i

For each word w = 2 to end of corpus A (the base corpus)
	
 Find the index iw of that word in the wordlist
	
 Find the index iw-1 of the previous word in the wordlist
	
 Add 1 count to bigram array at (iw-1,iw)
End

Raw probabilities:
Normalise bigram array by sum of total counts

Conditional probabilities:
Normalise bigram array by counts of each individual word

Laplace’s Law

It is very easy to add to the code we’ve already done: tally the
counts as before, but add one to each

Process the code (remove commas, add start/end symbols
Create array of bigrams with λ each of size nwords x nwords
Create a wordlist of all words in both of the corpora, each

with an index i

For each word w = 2 to end of corpus A (the base corpus)
	
 Find the index iw of that word in the wordlist
	
 Find the index iw-1 of the previous word in the wordlist
	
 Add 1 count to bigram array at (iw-1,iw)
End

Raw probabilities:
Normalise bigram array by sum of total counts

Conditional probabilities:
Normalise bigram array by counts of each individual word

How well does this do?

‣A lot better. However, now it generally puts a lot of probability
mass on the items that never occur in the training corpus.

Counts MLE Laplace

0 0 0.000014

1 0.00392 0.000028

2 0.00784 0.000042

3 0.01176 0.000056

tallies <- getlaplacebigramtallies("weather.txt","weather2.txt")

Raw
Counts MLE Laplace

0 0 0.00374

1 0.60024 0.00743

2 0.68590 0.01112

3 0.42857 0.01465

Conditional

How well does this do?

‣A lot better. However, now it generally puts a lot of probability
mass on the items that never occur in the training corpus.
‣Changing to a smaller λ (0.5 is often used) improves things

Counts MLE Laplace

0 0 0.000014

1 0.00392 0.000042

2 0.00784 0.000070

3 0.01176 0.000098

tallies <- getlaplacebigramtallies("weather.txt","weather2.txt")

Raw
Counts MLE Laplace

0 0 0.00373

1 0.60024 0.01102

2 0.68590 0.01827

3 0.42857 0.02500

Conditional

How well does this do?

‣A lot better. However, now it generally puts a lot of probability
mass on the items that never occur in the training corpus.
‣Changing to a smaller λ (0.5 is often used) improves things

In practice, more complicated smoothing techniques are
used, which add different amounts depending on the

initial estimates.

A common form is known as Good-Turing estimation, but
I will not be spending more time on this. The point was to
make you aware of the need for smoothing, and how you

might go about it.

‣ Yesterday: a simple model for sequence learning (n-grams)
- Application to natural language processing

➡ Today: n-gram models
- Description of the approach
- The problem of overfitting
- A solution to the problem of overfitting
➡ Some applications
‣After mid-semester break: extending n-grams (HMMs)

- What about more complex structure?
- Computing likelihood of observations
- Inferring the hidden state sequence
- Finding the best HMM (if time)

Plan for today

n-gram learning in cognitive science

‣So far we’ve been talking about n-grams in the context of
learning which words follow which other words -- which is
important
‣But sequence learning is far more general, and other aspects of

sequence learning are far more simple, so let’s start with those

Let’s start simply

‣Simplest possible use of sequential knowledge: two options, need
to predict which one is happening next

?
Asking people to explicitly make predictions may be difficult for them,

and not fully capture the state of their knowledge

Let’s start simply

‣ Instead, simply ask them to report what symbol they see, and
record their reaction time

Fast

Pretty fast

Slow

Task details

‣ 2 stimuli, usually the same
symbol in different sizes (o,O,
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between
stimuli (usually 800ms)

Task details

☐

‣ 2 stimuli, usually the same
symbol in different sizes (o,O,
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between
stimuli (usually 800ms)

Task details

☐

‣ 2 stimuli, usually the same
symbol in different sizes (o,O,
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between
stimuli (usually 800ms)

Task details

‣ 2 stimuli, usually the same
symbol in different sizes (o,O,
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between
stimuli (usually 800ms)

Task details

o

‣ 2 stimuli, usually the same
symbol in different sizes (o,O,
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between
stimuli (usually 800ms)

Task details

o

‣ 2 stimuli, usually the same
symbol in different sizes (o,O,
sometimes different symbols ☐,o)

‣ Two fingers on two buttons

‣ Stimulus on screen until response

‣ Fixed RSI - interval between
stimuli (usually 800ms)

Task details

‣Responses are usually coded as repetitions or alternations

Element Coding

O O O O O R R R R

☐ ☐ ☐ ☐ ☐ R R R R

☐ O ☐ O ☐ A A A A

☐ ☐ O ☐ O R A A A

O O O O ☐ R R R A

Typical response curve

Cho et al., 2012

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Re
ac

tio
n

tim
e

(m
s)

most recent

Typical response curve

Cho et al., 2012

Stimuli that fit a pattern
are faster (and have

fewer errors)

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Re
ac

tio
n

tim
e

(m
s)

Typical response curve

Cho et al., 2012

Violations of a local
pattern are slower (and

have more errors)

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Re
ac

tio
n

tim
e

(m
s)

Typical response curve

Cho et al., 2012

Repetitions are
generally slightly faster

than alternations

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Re
ac

tio
n

tim
e

(m
s)

REP ALT

Not all RT curves are typical...
Re

ac
tio

n
tim

e
(m

s)

Cho et al, 2002Soetens et al, 1985 Jones et al, 2002

‣1000ms RSI
‣1-1 mapping
‣Two hands

‣800ms RSI
‣1-1 mapping
‣One hand

‣900ms RSI
‣1-many mapping
‣One hand

Can n-gram models explain RT curves?

‣How do we capture forgetting over past events?

‣What level of n? i.e., how many previous items are people
sensitive to? Does this vary as a function of the number of
response options?

Capturing forgetting

‣Long-standing evidence suggests that forgetting can be
captured as an exponential function over time

‣To the n-gram probabilities we therefore add an
exponential filter with a forgetting rate of λ

P(wn-j,...wn)

st
re

ng
th

 o
f

m
em

or
y

time

present

Can n-gram models explain RT curves?

‣How do we capture forgetting over past events?

➡ What level of n? i.e., how many previous items are
people sensitive to? Does this vary as a function of the
number of response options?

Can n-gram models explain RT curves?

‣Varying n means people track different statistics

unigram: Essentially a reflection of frequency

bigram: Dependency on previous item

P(☐), P(○)

P(☐|☐), P(○|☐), P(☐|○), P(○|○)

trigram: Dependency on previous two items

P(☐|☐☐), P(○|☐☐), P(☐|○☐), P(○|☐○)...

Model predictions

unigram bigram

As is standard, RT is assumed to be inversely proportional to the
predictive probability of the next element

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Jones et al, 2002
Model

Cho et al, 2002
Model

Model predictions

unigram bigram

These fit in with the previous results in an interesting way!

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

R A R A R A R A R A R A R A R A
R R A A R R A A R R A A R R A A
R R R R A A A A R R R R A A A A
R R R R R R R R A A A A A A A A

Higher order = harder to track?

unigram: Only two elements to track

bigram: Four elements to track

P(☐), P(○)

P(☐|☐), P(○|☐), P(☐|○), P(○|○)

trigram: Eight elements to track

P(☐|☐☐), P(○|☐☐), P(☐|○☐), P(○|☐○)...

In general, the number of elements increases proportional
to Kn, where K is the number of sequence elements and
n is the order of transition probabilities being considered

Higher order = harder to track?

This implies that with more elements, it might be increasingly
harder to track all of the transition probabilities

This
study was
1-many

And
this
was
1-1

Prediction: if there are three (rather than two) elements, it
should be more difficult to track bigrams

Experiment: three response options

Three elements with no natural ordering

Correspond to three buttons on response box (top, left, right)

Predictions of different n-gram models

Grouped data
into 41

equivalence
classes

e.g.: AABBC =
{11223; 11332;
22113; 22331;

33112; 332211} unigram
bigram

A A
A A A A A A A A A A A A A A B
A A A A A B B B B B B B B B A A A A A A A A A B B B B B B B B B C C C C C C C C C
A A B B B A A A B B B C C C A A A B B B C C C A A A B B B C C C A A A B B B C C C
A B A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

Human performance

Much better
match to the

unigram model!

Experiment
Model

A A
A A A A A A A A A A A A A A B
A A A A A B B B B B B B B B A A A A A A A A A B B B B B B B B B C C C C C C C C C
A A B B B A A A B B B C C C A A A B B B C C C A A A B B B C C C A A A B B B C C C
A B A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

Quantifying model fits

‣ Calculated log-likelihood values of model fits for datasets that
varied the response options

‣ Bigram model fits best when there are two response options,
unigram when there are three

‣ Consistent with the idea that which statistics people track
depends on their complexity

Quantifying model fits

‣ Calculated log-likelihood values of model fits for datasets that
varied the response options

‣ Bigram model fits best when there are two response options,
unigram when there are three

‣ Consistent with the idea that which statistics people track
depends on their complexity

‣ But this task is extremely simple! Do people track and notice
transition probabilities (bigrams or more) or frequencies (unigrams)
when the elements and domain is more complicated?

The problem of word segmentation

Spaces between words can’t be heard!

Whatyouhearsoundsmorelikethisallthetime;
yourbrainjustmakesthespacesforyou.

“There are no silences between words”

The problem of word segmentation

... This is sometimes the root of amusing mistakes

I am heyv!

I don’t want to go to your ami.

The ants are my friends, they’re blowing in the wind.

Daddy, when you go tinkle you’re an eight, and when I
go tinkle I’m an eight, right?

How do you decide where to put the spaces?

i ng

0.4

ng th e
ng a

ng b a

ng …

0.03

0.05

0.007

“Singasong”

One idea: bigram transition probabilities

“Sing” is therefore more likely to
be a word than “inga”

More precisely...

The old man was the man who ate the fruit.

ðə ðə ðə

ð ə p(əә|ð) = 1.0

n

mæn

æm
æ

mæn

p(æ|m) = 1.0
p(n|æ) = 1.0

uːeɪ

eɪuː

uːt

p(eɪ|uː) = 0.5

probably a word

probably a word

probably not a word

An empirical test on people

Can people segment words in an artificial language
simply on the basis of transition probabilities?

2 minutes of
continuous speech

four 3-syllable
nonsense words

dapikutiladoburobidapikupagotutiladopagotudapikuburobi...

An empirical test on people

Test by seeing if they recognise the difference between
partial words and non-words (defined as such based

only on their bigram transition probabilities)

dapikutiladoburobidapikupagotutiladopagotudapikuburobi...

dapi: partial word p(pi|da) = 1.0

kupa: non-word p(pa|ku) = 0.33

An empirical test on people
Habituate infants to a long stream of this speech.

After they are bored, play either a speech stream containing
partial words like dapi or non-words like kupa.

An empirical test on people
Infants listened longer (indicating surprise) to the non-words. Since

they differed only according to their bigram probabilities, this
suggests that infants track those probabilities.

M
ea

n
lis

te
ni

ng
 t

im
e

(s
ec

)

Partial words Non-words

6

7

8

*

How well does this scale?
How good of a segmentation does a bigram model create, given

a corpus of typical child-directed speech?

yuwanttusiD6bUk
&nd6dOgi
yuwanttulUk&tDIs
lUk&tDIs
h&v6drINk
tekItQt

Corpus of child-directed speech transcribed into an
ASCII version of phonetic notation

you want to see the book?
and a doggie!
you want to look at this?
look at this!
have a drink
take it out

How well does this scale?
How good of a segmentation does a bigram model create, given

a corpus of typical child-directed speech?

Phoneme frequency Phoneme bigram frequency

Ph
on

em
e

fre
qu

en
cy

How well does this scale?
Still sparse, but much less so - phoneme frequencies do not

follow Zipf’s law!

How well does this scale?

The high-frequency bigrams seem to be reasonable words or
word parts

High frequency bigrams Interpretation

It (8) It

WA (4) Beginning of ‘what’

At (4) End of ‘what’

lU (4) Beginning of ‘look’

Uk (4) End of ‘look’

Yu (4) Yu

How well does this scale?

High frequency bigrams Interpretation

It (8) It

WA (4) Beginning of ‘what’

At (4) End of ‘what’

lU (4) Beginning of ‘look’

Uk (4) End of ‘look’

Yu (4) Yu

We still need to be able to go from knowing the transition
probabilities to knowing where to put the word breaks

Where to put the word breaks?

Idea: Set some threshold based on transition probability.
E.g., everything with a transition probability above λ is a
word break.

Problem: How do
you decide what
the threshold is?
Very dependent
on the corpus.

Where to put the word breaks?

This will yield a likelihood and prior we can use to
evaluate different segmentations of the corpus.

Instead, let’s do this in a more principled fashion by
defining how a corpus might have been generated.

Where to put the word breaks?

Instead, let’s do this in a more principled fashion by
defining how a corpus might have been generated.

Reverse engineer:

1) Assume sentences are
constructed by drawing words
one-by-one from a set of
possible words

2) The n-gram model specifies how
many previous words guide
which word you draw

e.g., bigram

Where to put the word breaks?

Implies that, given some input (and the knowledge of
what order of n-gram model was used to generate
it*), our task is to figure out what the words are.

* Later, we’ll relax that constraint. For now, let’s assume it is a unigram model.

yuwanttusiD6bUk#
lUkD*z6b7wIThIzh&t#

&nd6dOgi#
yuwanttulUk&tDIs#

lUk&tDIs#
h&v6drINk#

okenQ#
WAtsDIs#
WAtsD&t#
WAtIzIt#

lUkk&nyutekItQt#
…

unigram

Where to put the word breaks?

Algorithm for generating a corpus:
Repeat U times
 Repeat until $ is generated
 Generate the next word w with
 probability Pw(w)
 Generate $ with probability P$

of utterances in
the corpus

End-of-utterance symbol

As each word is generated, it is concatenated onto the
previously generated sequence of words.

Where to put the word breaks?

The likelihood of generating words w1…wn as a single
utterance is therefore given by:

For n-1 of the words, the
probability of generating them

and not $

For the nth word, the
probability of generating it

and $

Where to put the word breaks?

Venkataraman, 2001

This allows us to calculate
the probability of
generating the

unsegmented utterance u

It is found by summing over all the
possible sequences of words that
could be concatenated to form u

Problems with this?

Venkataraman, 2001

Maximising P(u) in this case will favour the answer that
says the entire corpus consists of only one word

Why?

Example: If u = bax and
your only word is bax there

is only one way to get a
corpus of that length:

bax

Example: If u = bax and
your words are b and ax,
you could have gotten:

bax
axb
bbb

So P(u) = 1 So P(u) = ⅓

Problems with this?

Maximising P(u) in this case will favour the answer that
says the entire corpus consists of only one word

Why?

This hugely overfits the data and is not the
solution we want

Solution

We need to have some “penalty” that favours simpler hypotheses:
an ideal balance between fewer words, and smaller words

How about a
prior?

What kind of prior might that be?

Well, really, what else?

Summary of the model

Find the best word segmentation: Search over the possible
sets of words, and pick the one with the highest posterior

probability.

(Likelihood is 0 if it cannot generate that corpus, 1 if it can;
so in this case, it all comes down to the prior)

This process defines the prior probability, given an
assumption about how the order is generated (e.g.,
unigram or bigram), of a set of words for the corpus

Results: unigram

Does reasonably well, but tends to undersegment

youwant to see thebook
look there’s aboy with his hat

and adoggie
you wantto lookatthis

lookatthis
havea drink
what’sthis
what’sthat
whatisit

look canyou take itout
take thedoggie out

ithink it will comeout
…

Unigram

Results: bigram

Removes much of the undersegmentation problem

youwant to see thebook
look there’s aboy with his hat

and adoggie
you wantto lookatthis

lookatthis
havea drink
what’sthis
what’sthat
whatisit

look canyou take itout
take thedoggie out

ithink it will comeout
…

you want to see the book
look there’s a boy with his hat

and a doggie
you want to lookat this

lookat this
have a d rink
what’s this
what’s that
what isit

look canyou take itout
take thedoggie out

i think it will comeout
…

Unigram Bigram

Results: compare to human performance

1) Teach undergrads
an artificial language

badipagutivuzubadilakiduvuzu…

2) Test them on the
words in it
badi or tivu?

3) Track their
performance

Results: compare to human performance

Model performance matches human performance
quite highly

Sentence length

Pe
rf

or
m

an
ce

Summary so far

‣ We’ve seen that people seem to track different statistics
depending on the complexity

Summary so far

‣ We’ve seen that people seem to track different statistics
depending on the complexity

‣ There is evidence that even infants can track bigram transition
probabilities and use them for word segmentation

Summary so far

‣ We’ve seen that people seem to track different statistics
depending on the complexity

‣ There is evidence that even infants can track bigram transition
probabilities and use them for word segmentation

‣ A model that uses these probabilities, plus a prior favouring few
words, creates a good segmentation of child-directed speech

you want to see the book
look there’s a boy with his hat

and a doggie
you want to lookat this

lookat this
have a d rink
what’s this
what’s that
what isit

look canyou take itout
take thedoggie out

i think it will comeout
…

Summary so far

‣ We’ve seen that people seem to track different statistics
depending on the complexity

‣ There is evidence that even infants can track bigram transition
probabilities and use them for word segmentation

‣ A model that uses these probabilities, plus a prior favouring few
words, creates a good segmentation of child-directed speech

Are people only really good at tracking bigram statistics over lots
of things in the case of language?

NOTE: THE ACTUAL LECTURE STOPPED
HERE. THE REMAINING SLIDES ARE NOT
EXAMINABLE; I’M JUST INCLUDING THEM

IN CASE YOU’RE CURIOUS
 - AMY

(also, of course, the slides i skipped over
earlier are also not examinable)

Summary so far

Are people only really good at tracking bigram statistics over lots
of things in the case of language?

Probably not; one large difference between the first experiment
and the word segmentation ones is that there were actual large
differences in bigram probability in the word segmentation ones

But in any case we can test this!

Bigram probabilities in action sequences

Instead of concatenating syllables together to create words,
concatenate actions together to create action sequences

High prob within sequence:

P(poke|stack)
P(drink|poke)
… etc …

Low prob between sequences:

P(stack|rattle)
P(insert|peek)
… etc …

Bigram probabilities in action sequences

Non-actions: reordered by rearranging within action sequences

Adults watched the videos, and were told they were taking a
test of memory. Three types of test trials:

Actions: reordered parts of the video, but kept action sequences together

Bigram probabilities in action sequences

Part-actions: reordered by concatenating actions that overlapped boundaries

Adults watched the videos, and were told they were taking a
test of memory. Three types of test trials:

Bigram probabilities in action sequences

They could discriminate actions from non-actions or part-actions

Compared
to non-
actions

Compared
to part-
actions

Ac
cu

ra
cy

Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given
the previous n-1 items, are widely used in natural language
processing to address the problem of sequence learning.

Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given
the previous n-1 items, are widely used in natural language
processing to address the problem of sequence learning.
‣Due to Zipf’s law, they have a big overfitting problem

Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given
the previous n-1 items, are widely used in natural language
processing to address the problem of sequence learning.
‣Due to Zipf’s law, they have a big overfitting problem
‣Solutions to this problem involve smoothing -- taking probability

from the attested n-grams and putting it on the unattested ones

Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given
the previous n-1 items, are widely used in natural language
processing to address the problem of sequence learning.
‣Due to Zipf’s law, they have a big overfitting problem
‣Solutions to this problem involve smoothing -- taking probability

from the attested n-grams and putting it on the unattested ones
‣ In simple sequences, people track n-grams of different n,

depending on the complexity of the task

Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given
the previous n-1 items, are widely used in natural language
processing to address the problem of sequence learning.
‣Due to Zipf’s law, they have a big overfitting problem
‣Solutions to this problem involve smoothing -- taking probability

from the attested n-grams and putting it on the unattested ones
‣ In simple sequences, people track n-grams of different n,

depending on the complexity of the task
‣ In word segmentation and action sequences, people can form

chunks based on bigram probabilities

dapikutiladoburobidapikupagotutiladopagotudapikuburobi...

Summary of n-gram models

‣ n-gram models, which calculate the probability of an item given
the previous n-1 items, are widely used in natural language
processing to address the problem of sequence learning.
‣Due to Zipf’s law, they have a big overfitting problem
‣Solutions to this problem involve smoothing -- taking probability

from the attested n-grams and putting it on the unattested ones
‣ In simple sequences, people track n-grams of different n,

depending on the complexity of the task
‣ In word segmentation and action sequences, people can form

chunks based on bigram probabilities
‣After mid-semester break: more complicated sequence learning,

and then an analysis of the kind of information people use

Additional references (not required)

‣ Manning, C., & Schutze, H. (1999). Foundations of statistical natural language
processing. Chapter 5: 191-203

N-gram models

‣ Tambovtsev, Y., & Martindale, C. (2007). Phoneme frequencies follow a Yule
distribution. SKASE Journal of Theoretical Linguistics 4(2): 1-11.

Zipf’s law for phonemes

‣ Frank, M., Goldwater, S., Griffiths, T., & Tenenbaum, J. (2007). Modeling human
performance in statistical word segmentation. Proceedings of the 29th conference of
the Cognitive Science Society.
‣ Goldwater, S., Griffiths, T., & Johnson, M. (2009). A Bayesian framework for word
segmentation: Exploring the effects of context. Cognition 112: 21-54.
‣ Venkataraman, A. (2001). A statistical model for word discovery in transcribed
speech. Computational Linguistics 27(3): 351-372.

Word segmentation

