
Computational Cognitive Science

Lecture 8: Unsupervised
classification

‣Unsupervised classification
- Case study: phoneme learning in language

‣A first try: k-means clustering
- Limitations and an extension

‣Next try: Mixture of Gaussians
- EM model for calculating

‣Next: Semi-supervised classification

Lecture outline

both fairly analogous
to prototype models

➡ Unsupervised classification
- Case study: phoneme learning in language

‣A first try: k-means clustering
- Limitations and an extension

‣Next try: Mixture of Gaussians
- EM model for calculating

‣Next: Semi-supervised classification

Lecture outline

Where we stand so far

‣So far we’ve been introduced to the problem of classification

observation x

label ℓ(x)

predict the label of
other observations y

Where we stand so far

‣So far we’ve been introduced to the problem of classification
‣We’ve seen some possible models...

Categories are (Gaussian)
probability distributions

Categories are estimated by
combining “kernels” around

each observation

Categories are (Gaussian)
probability distributions

Categories are estimated by
combining “kernels” around

each observation

Where we stand so far

‣So far we’ve been introduced to the problem of classification
‣We’ve seen some possible models... and how they link to

psychological theory

Prototype Exemplar

Where we stand so far

‣So far we’ve been introduced to the problem of classification
‣We’ve seen some possible models... and how they link to

psychological theory
‣But in all of these examples we’ve assumed that everything is

labeled!
Indeed, many of the

models require it!

A problem: This doesn’t describe real life

‣Most of the time things are at most semi-supervised; only some
things are labelled

cat

cat
cat

A problem: This doesn’t describe real life

‣And some things are never labelled (by definition!)
‣ For instance: sound categories in a language

Phonemes: units of sound (consonants or
vowels) in a language. Shortest segment of

speech that distinguishes two words

b h t

bed
head

sh

showertower

Unsupervised classification: Phonemes
Vowels: sounds where the air is not blocked,

classified by the shape of the mouth

Unsupervised classification: Phonemes
Phoneme categories differ across languages

/e/ - /eɪ/
bet - bait

/ɪ/ - /ɪː/
bit - beat

F1
 (

H
z)

F2 (Hz)

F1
 (

H
z)

F2 (Hz)

Unsupervised classification: Phonemes
Phoneme categorisation (in any language) is very difficult!

High variability
due to:

Speaker
differences

Intonation

Context
(surrounding
phonemes)

Vowel space

Unsupervised classification: Phonemes
Phoneme categorisation (in any language) is very difficult!

High variability
due to:

Speaker
differences

Intonation

Context
(surrounding
phonemes)

Vowel space

Plus it is totally
unsupervised!

Unsupervised classification: Phonemes
Phoneme categorisation (in any language) is very difficult!

Main question: How do people (children) learn the
phoneme categories appropriate to their language?

Possible answer: They use distributional information
(info about how the sounds are distributed)... which

you can get just by listening (plus a reasonable
mechanism for unsupervised learning)

Do people actually
learn this way?

What algorithm
might do this?

Do people actually learn distributionally?
Yes, it seems they do.

Experimental test (infants): Present them with different
distributions of sounds...

Unimodal: Should
learn one phoneme

Bimodal: Should learn
two phonemes

Do people actually learn distributionally?
Yes, it seems they do.

Experimental test (infants): Then, after they’ve heard that
distribution, have them listen to one sound over and over until

they get bored (habituated)

A

Habituation:
play “A”
repeatedly

at
te

nt
io

n

time

Do people actually learn distributionally?
Yes, it seems they do.

Experimental test (infants): Test on another sound. If they think it
is one underlying category, they should remain bored. If they

think it is two, they should get interested again.

A B

Test:
play “B”
repeatedly

at
te

nt
io

n

time

?

Habituation:
play “A”
repeatedly

at
te

nt
io

n

time

Do people actually learn distributionally?
Yes, it seems they do.

Experimental result (infants): They do get interested again in the
bimodal condition, but not the unimodal. So they must be

learning the underlying distribution

Do people actually learn distributionally?
Yes, it seems they do.

Experimental result (infants): They do get interested again in the
bimodal condition, but not the unimodal. So they must be

learning the underlying distribution

How?

‣Unsupervised classification
- Case study: phoneme learning in language

➡ A first try: k-means clustering
- Limitations and an extension

‣Next try: Mixture of Gaussians
- EM model for calculating

‣Next: Semi-supervised classification

Lecture outline

The computational problem

F1 (MHz)

First 10 phonemes from Hillenbrand et al (1995), who recorded people saying vowel phonemes.
load(‘phonemedata.RData’)

1.2

F 2
 (M

Hz
)

3.0

The computational problem

First 10 phonemes from Hillenbrand et al (1995), who recorded people saying vowel phonemes.

IY

IH
EI

AE
EH

ER

OO
OA AW

AH

load(‘phonemedata.RData’)

F1 (MHz) 1.2

F 2
 (M

Hz
)

3.0

K-means clustering

Given a guess about how many clusters k there are, initialise
the clusters randomly and then assign points to clusters in a
way to minimise their distance from the centre of the clusters

load(‘sampledemo.RData’)
kmeanscluster(d,4)

K-means clustering

Assumes that we can define a metric that measures the
distance between two points in the space

y (4,8)

z (6,2)

For now, we’ll use the following
metric for any two points y and z:

Initialization:
Set each mean to a random value*
Initialise “previous” responsibility matrix rprev
Set up initial current responsibility matrix rcurr

While rprev != rcurr

 Assignment step:
 Assign each datapoint to the closest mean

 Update step:
 Recalculate the means

End

K-means clustering: Pseudocode

* To ensure that each cluster has at least one datapoint, set this to the value of a random datapoint

A “responsibility” matrix captures the
assignment of datapoints to clusters

m(k) is the mean of the kth cluster

Example 1: Easy dataset

load(‘fakeeasydata.RData’)
kmeanscluster(d,4)

How well does it do on the phoneme data?

Note that the
clusters
appear

elongated
because the
axes are on

different
scales.

1.2

3.0

1.2

3.0

load(‘phonemedata.RData’)
kmeanscluster(d,4)

How well does it do on the phoneme data?

3.5

3.5

3.5

3.5

3.5

3.5

When on
equal scales,

the actual
phonemes are
elongated but

the ones
learned by k-
means are not

load(‘phonemedata.RData’)
kmeanscluster(d,4)

‣Good things
- Guaranteed to converge to a local maximum
- Fast

‣Bad things
- Convergence is not to global maximum, so final result is very

dependent on starting position
- Particularly bad for certain kinds of datasets

Qualitative analysis of k-means

Bad dataset #1: Points overlap

load(‘baddataset1.RData’)
kmeanscluster(d,4)

Bad dataset #2: Differently sized clusters

load(‘baddataset2.RData’)
kmeanscluster(d,2)

Bad dataset #3: Elongated clusters

load(‘baddataset3.RData’)
kmeanscluster(d,2)

(like the phoneme data)

Another general problem

Category
assignments

are hard.
Points near the
border should
arguably affect
the means of

all nearby
clusters.

Initialization:
Set each mean to a random value*
Initialise “previous” responsibility matrix rprev
Set up initial current responsibility matrix rcurr

While rprev != rcurr

 Assignment step:
 Each datapoint is assigned to each mean probabilistically,

 proportional to its distance from the mean

 Update step:
 Recalculate the means

End

Soft K-means clustering: Pseudocode

* To ensure that each cluster has at least one datapoint, set this to the value of a random datapoint

Before: “responsibility” matrix captures
the assignment of datapoints to clusters

m(k) is the mean of the kth cluster

Initialization:
Set each mean to a random value*
Initialise “previous” responsibility matrix rprev
Set up initial current responsibility matrix rcurr

While rprev != rcurr

 Assignment step:
 Each datapoint is assigned to each mean probabilistically,

 proportional to its distance from the mean

 Update step:
 Recalculate the means

End

Soft K-means clustering: Pseudocode

* To ensure that each cluster has at least one datapoint, set this to the value of a random datapoint

Now: it captures a “soft” assignment of
datapoints to clusters

m(k) is the mean of the kth cluster
β governs the “stiffness” of assignments

Soft K-means often performs sensibly

β = 3

load(‘softkmeansdemo.RData’)
softkmeanscluster(d,3,3)

Soft K-means often performs sensibly

β = 3

As β approaches infinity, it turns into hard k-means clustering

β = 1

β = 10 β = 50β = 6

... but it still has many of the same problems
Can’t handle clusters of different sizes

β = 3β = 1

β = 10 β = 50

load(‘baddataset2.RData’)
softkmeanscluster(d,2,beta)

... but it still has many of the same problems
Can’t handle elongated clusters

β = 3β = 1

β = 10 β = 50

load(‘baddataset3.RData’)
softkmeanscluster(d,2,beta)

What’s going on here?

Take a step back, first. How are data (like phonemes)
probably generated?

Some sort of
underlying

process which
imposes a
distribution
over data

points

What’s going on here?

k-means clustering is making some implicit
assumptions about the nature of that process

Distance
metric is the

same in every
direction and

for every
cluster

What’s going on here?

As a result, k-means assumes that all clusters are the
same size as well as symmetric (circular)

Both of these are
impossible to do well

The fix: change these assumptions

As a result, k-means assumes that all clusters are the
same size as well as symmetric (circular)

The result is an algorithm called
Mixture of Gaussians

‣Unsupervised classification
- Case study: phoneme learning in language

‣A first try: k-means clustering
- Limitations and an extension

➡ Next try: Mixture of Gaussians
- EM model for calculating

‣Next: Semi-supervised classification

Lecture outline

Mixture of Gaussians

Assumes that the data are generated by Gaussians
(normal distributions), possibly with different

variances in different directions

The algorithm for
calculating the
best Gaussians
is called the EM
algorithm after
the two steps

involved

Mixture of Gaussians with EM

The Expectation step (or E-step) is a direct analogue
of the assignment step previously: each datapoint is

assigned probabilistically to each cluster

Responsibilities are:

Equation for a Gaussian -
you’ve seen this in Dan’s recent lectures!

(so this is exactly the same as calculating the likelihood of that point
under the Gaussian distribution with parameters w, m, and σ)

Mixture of Gaussians with EM

The Expectation step (or E-step) is a direct analogue
of the assignment step previously: each datapoint is

assigned probabilistically to each cluster

Responsibilities are:

weight for
cluster k

standard
deviation

of cluster k
Mean along
dimension i
for cluster k

Point n at
dimension i

Total number of
dimensions i

Mixture of Gaussians with EM

The Maximisation step (or M-step) is an analogue of
the update step previously, but in addition to the mean
we need to update the weights and standard deviation

Means:

this is the same as the
update step for soft k-
means: the mean of all
points weighted by the

proportion to which they
belong in the cluster

Variance:

This is the average
variance of the cluster

where points are
weighted by the

proportion of their
likelihood taken care of

by that cluster

Weights:

This is the sum of
all responsibilities
in that cluster (so
clusters with more
points have more

weight)

Mixture of Gaussians: Pseudocode
Initialization:
Set each mean, standard deviation, and weight to a random value*
Initialise “previous” responsibility matrix rprev
Set up initial current responsibility matrix rcurr

While rprev != rcurr

 Assignment step (E-step):
 Calculate the likelihood of each datapoint in each cluster,
 assuming the cluster is a Gaussian with the current mean,
 standard deviation, and weight

 Update step:
 Recalculate the means

 Recalculate the standard deviations
 Recalculate the weights

End

Corresponds to “version 3” algorithm on page 304 of MacKay (see readings)

How does MoG do?

load(‘softkmeansdemo.RData’)
mixtureofgaussians(d,3)

How does MoG do?

load(‘baddataset2.RData’)
mixtureofgaussians(d,2)

How does MoG do?

load(‘baddataset3.RData’)
mixtureofgaussians(d,2)

How does MoG do on our phoneme data?

load(‘phonemedata.RData’)
mixtureofgaussians(d,10)

This error occurs because it is
getting NaNs for the likelihood

In trying to account for the two points at the
bottom, it the variance in the y dimension to
zero, resulting in infinite likelihood

How does MoG do on our phoneme data?
kludge: just set it so the minimum variance can’t go

below some small constant (e.g., 0.001)

Good things about Mixture of Gaussians

‣As with k-means, convergence to a local maximum is
fast and guaranteed
‣Performance is considerably better than k-means: can fit

asymmetrc clusters of unequal variance
‣Can handle soft assignment
‣ Interpretable probabilistically, in terms of maximising the

likelihood of the dataset assuming the clusters are
Gaussian

Bad things about Mixture of Gaussians

‣As with k-means, not guaranteed to converge to a global
maximum; still sensitive to initial conditions
- You can especially see this if you set the initial variances too

low or too high
‣As with k-means, you have to tell it how many clusters

there are
‣Occasionally shows pathological behaviour in which (a)

one cluster has infinitely small variance, or (b) all means
are the same and all points shared among all clusters
- Making it properly Bayesian by instead setting a prior on the

variance can help here, and is more principled

A full model of phonetic learning

‣MoG is vastly better, but still not great for a dataset as
complicated as the phoneme data
‣Existing models build on MoG in three ways:

- Solving the local maximum problem: integrate over all
possible solutions, don’t just find a single best one given your
starting point like EM

- Solving the zero-variance problem: Set a prior over the
means, variances, and weights

- Learn how many categories would be appropriate through a
special kind of prior on the # of categories; Dan will be talking
about this in the next lecture!

Summary

‣Although many things in life are supervised or semi-supervised,
a number are completely unsupervised
‣A very simple model of unsupervised clustering, k-means, is

fast and okay but has several problems
- Local maxima; sensitivity to starting conditions; can’t handle if the

categories are not equal-sized and symmetric; have to tell it how
many clusters; hard assignments

- Adding soft assignments helps but doesn’t solve most problems

‣Mixture of Gaussians with EM, which views the problem as
finding the underlying Gaussian distributions, solves many of
these problems, but not all
- Local maxima; sensitivity to starting conditions; have to tell it how

many clusters

Additional references (not required)

k-means clustering and mixture of Gaussians

‣ MacKay, D. (2003). Information theory, inference, and learning
algorithms. Chapters 20 and 22.

Introduction to language / phonemes

‣ Kuhl, P. (2004). Early language acquisition: Cracking the speech
code. Nature Reviews Neuroscience 5: 831-843.
‣ Chater, N., and Manning, C. (2006). Probabilistic models of
language processing and acquisition. Trends in Cognitive Science
10(7): 335-344.

