
Supervised classification
Computational Cognitive Science 2014

Dan Navarro

From last time…

• Ideas from cognitive science
• The classical view and why it fails

• Two family resemblance views: prototypes and exemplars

• Hints about richer structure?

!

• Ideas from statistical machine learning
• Supervised, unsupervised and semi-supervised learning

• A simple Gaussian classifier (linked to prototype models)

!

• Today…
• An extension of the Gaussian classifier

• More classifiers (linked to exemplar models)

The prototype Orange is typical because it
is similar to the prototype

Olive is atypical because it is
not similar to the prototype

The prototype view

Orange is typical because it
is similar to lots of other fruit

Olive is atypical because it is
very dissimilar to most fruit

The exemplar view

Prototypical category member is here?

Atypical item Atypical item

This kind of classifier is very
closely linked with prototype

theory in psychology

The classifier from last time

Inference based on five parameters:
!
μa : Mean of category a
μb : Mean of category b
σa : Standard deviation of category a
σb : Standard deviation of category b
θ : Base rate for category a

Extension to the multidimensional case

Each category is a probability
distribution defined over a
multidimensional space

Let’s say… each category is a
multivariate Gaussian

The multivariate Gaussian

Vector
describing
the mean

Covariance
matrix

Vector describing
the observation

Matrix
determinant

Matrix
inverse

The mean vector describes where the
distribution is centred

µ = (.3, .3)

µ = (.4, .7)

The main diagonal of the covariance
matrix describes elongation

⌃ =

✓
1 0
0 1

◆
⌃ =

✓
1 0
0 2

◆

The off diagonal elements describe
orientation

⌃ =

✓
1 0
0 1

◆
⌃ =

✓
1 .5
.5 1

◆
⌃ =

✓
1 .5
.5 2

◆

The off diagonal elements describe
orientation

⌃ =

✓
1 0
0 1

◆
⌃ =

✓
1 .5
.5 1

◆
⌃ =

✓
1 .5
.5 2

◆

Doing it in R

• We won’t spend time working on this at a low level
• See: multivariateGaussian function in classifiers.R
• See: the mvtnorm package

• rmvnorm - generates samples from a multivariate normal

• dmvnorm - calculates probability under a multivariate

install.packages("mvtnorm")	
library(mvtnorm)	
rmvnorm(n=3, mean=c(10,0), sigma=rbind(c(10, 3), c(3, 1)))	
!
 [,1] [,2]	
[1,] 11.279109 0.6773104	
[2,] 7.777925 -1.4224349	
[3,] 5.109438 -1.7661479

Linear and quadratic decision bounds

If the covariance matrices are
the same for the two

categories, the decision rule is a
linear function in the space

Unequal covariance matrices
produce decision boundaries

described by quadratic functions

Comparison

Linear Quadratic

Demonstration code
(classifiers.R, multivariateGaussianClassifier function)

Where are we up to?

Prototype theory Corresponding classifier…

We store a single “prototype”,
against which new exemplars

are measured

Categories are represented as
probability distributions with a

single peak

We store lots of individual
examples, and compare new
observations to these stored

items separately

????

Prototype theory Corresponding classifier…

Different kinds of classifiers

• Model based, “parametric” classifiers
• Assume we know the shape of the category distribution (e.g., normal)

• Learn the parameters (mean, covariance) that describe a category

• Hold up well even when there’s very little data

• Perform poorly when the category has a different shape

Different kinds of classifiers

• Model based, “parametric” classifiers
• Assume we know the shape of the category distribution (e.g., normal)

• Learn the parameters (mean, covariance) that describe a category

• Hold up well even when there’s very little data

• Perform poorly when the category has a different shape

!

• Model free, “non-parametric” classifiers
• Avoid making any specific assumption about the category distribution

• Try to let the data itself tell you the shape of the category

• Very flexible, and perform well no matter what shape the category is

• Tend to perform worse when you have very little data

The k-nearest neighbours (kNN)
classifier

k-NN

• Very simple algorithm for finding label l(y)
• Find X(k-near), the k observations that are closest to y

• Look up the labels l(X(k-near)) of those k items

• Use a “majority vote” to predict l(y).

!

• In cognitive science terms:
• Stores all items, and uses retrieval from memory to do all the work

• It’s an exemplar model

Y

X

X

X

X
1st

2nd3rd

4th

5th
6th

1-NN says: RED
2-NN says: RED
3-NN says: RED
4-NN says: either
5-NN says: BLUE
6-NN says: either

Demonstration code
(classifiers.R, kNN function)

1 nearest
neighbour

3 nearest
neighbours

7 nearest
neighbours

15 nearest
neighbours

25 nearest
neighbours

75 nearest
neighbours

Is a blue or red?

How about now?

The neighbour ranks are the same

y

1

6
4

3 2

5

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

y
1

6
4

3 2

5

We don’t treat them the same

y

1

6
4

3 2

5

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

y
1

6
4

3 2

5

People pay attention to the distances

• It’s not just the “rank order”
• A very close 1st NN is more convincing than a distant 1st NN

• One very similar item can “swamp” everything else

!

• If we want a psychologically plausible exemplar model…
• … we’re going to have to make use of the actual distances

Non-parametric classifiers using kernel
density estimators

Kernel density estimators

• Flexible, model-based classifier:
• Place a kernel K around every training exemplar

• The kernel is a function (e.g., Gaussian distribution)

!

!

!

!

• In psychology:
• The exponential kernel is special (Shepard’s law of generalisation)

• It produces a model known as the “generalised context model”

• (Nosofsky, 1984, 1986)

P (y|x1, . . . , xn) /
nX

i=1

K(y � xi)

Gaussian kernel around a
single observation

Kernel density estimators

Kernel density estimators

Gaussian kernels around
two observations

Kernel density estimators

Gaussian kernels around
three observations

Kernel density estimators

Gaussian kernels around
four observations

Kernel density estimators

Gaussian kernels around
five observations

Kernel density estimators

Gaussian kernels around
five observations each
from two categories

Kernel density estimators

Classification boundaries?

red blue red

The cognitive science perspective

• Kernel density estimates are exemplar models
• Each observation x is stored
• The kernel describes the probability of generalising from a

single stored x to a new item y

• In particular…
• The exponential kernel is special (Shepard’s law of generalisation)

• It produces a model known as the “generalised context model”

• (Nosofsky, 1984, 1986)

P (y|x1, . . . , xn) /
nX

i=1

exp(�� d(y, xi))

Demonstration code
(classifiers.R, kernelClass function)

λ = 1000

λ = 100

λ = 10

λ = 1

Very large λ behaves like 1NN

1 NN λ = 1000

The cognitive science perspective

• The “generalised context model” (GCM)
• Proposed by Nosofsky (1984, 1986)

• Independent of the statistics literature on the topic!

• Equivalent to an exponential kernel classifier

!

• Very successful model.
• It’s very hard (not impossible) to beat the GCM as a cognitive model

• It’s a very good predictor of human behaviour

• It’s also simple, effective classifier

Training your classifier using
cross-validation

(no demonstration code :-()

The issue

• Choosing good parameters
• A lot of our algorithms have free parameters

• k in k-NN, λ in the kernel method

!

• Model selection:
• We have lots of competing classifiers

• We want to know which is best

!

• Goal:
• The goal isn’t to select the classifier that best fits the training data

• The goal is to select the one that best fits future data

Cross validation

• What are we trying to do?
• Select a model that is trained on X, and generalises well to Y

• If we have several models, which will generalise best?

• Which should we select?

• A simple suggestion:
• Divide the training data X into two subsets, X1 and X2.

• Train each model on X1 and test it on its predictions about X2.

• Choose the model that makes the best predictions.

Train the model on this Test the model on this

1-NN scores 17/20

3-NN scores 17/20

15-NN scores 16/20

On average, across many splits

Summary

• Prototype-like classifiers
• simple Gaussian classifier

• multivariate Gaussian classifier

!

• Exemplar-like classifiers
• k nearest neighbours

• kernel classifiers

!

• Cross-validation
!

• Next time: unsupervised classification…

