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Where are we at?

Bayesian statistics as a general 
purpose tool for doing inductive 

inference

A specific Bayesian model for 
human (and non-human) 
inductive generalisation 



Critical insight from last lecture: 
Structure underpins statistical learning

(1) We can organise stimuli 
into a psychological space 
(using MDS). 
!
(2) The hypothesis space can 
be described as a set of 
possible “regions” in this 
space 
!
(3) Inductive generalisations 
are shaped by this structure



There are some real domains that are 
truly spatial in structure: 

Colour is a genuine “space”.  
!

Generalisations about 
colours behave as if the 

hypothesis space consisted 
of regions in colour space 

(up to a point)



But we also talked about some domains 
that seem to be less structured

“Number” is only partially spatial: “magnitude” 
behaves like a psychological space, but “arithmetic 

properties” have a different structure



Many different 
structures exist

colour space

evolutionary tree

periodic spiral 
of elements



Let’s build a structured model of 
inductive generalisation that is 

appropriate for biological entities
(based on Sanjana & Tenenbaum 2003)



Biological categories 
probably don’t naturally 

form a “space” 
!

A tree structure might 
make more sense here

Our original motivating example used the 
wrong structure…
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Every object starts in its 
own cluster

Agglomerative 
hierarchical 
clustering



Merge the two “closest” 
clusters

Agglomerative 
hierarchical 
clustering



Repeat

Agglomerative 
hierarchical 
clustering



Repeat

Agglomerative 
hierarchical 
clustering



Repeat

Agglomerative 
hierarchical 
clustering



Keep repeating until you 
have the tree

Agglomerative 
hierarchical 
clustering



Notation

• Two clusters… 
• Cluster A contains objects A = (a1, a2, a3) 

• Cluster B contains objects B = (b1, b2, b3) 

• Let d(A, B) be the distance between cluster A and cluster B 

• Let d(a, b) be the (known) dissimilarity between item a and item b



Measuring distance between clusters?

• Two clusters… 
• Cluster A contains objects A = (a1, a2, a3) 

• Cluster B contains objects B = (b1, b2, b3) 

• Let d(A, B) be the distance between cluster A and cluster B 

• Let d(a, b) be the (known) dissimilarity between item a and item b 

!

• Different “link” functions to define cluster distance d(A, B) 
• Complete link:    d(A, B) = max( d(a, b) )      for a in A, b in B 

• Single link:         d(A, B) = min( d(a, b) )       for a in A, b in B 

• Average link:      d(A, B) = mean( d(a, b) )     for a in A, b in B



An empirically derived taxonomy

(I think this came from a 
single link clustering. The 

long stringy look to the tree 
is pretty typical of single link)



What shall our hypothesis space be?

This is our structure



What shall our hypothesis space be?

We need to use this structure to 
define a collection of possible 

“consequential sets”



First order hypotheses, H1

Every cluster in the tree 
counts as a possible 

consequential set

This “set” defines the hypothesis 
that we have a property that is 

unique to elephants



First order hypotheses, H1

Every cluster in the tree 
counts as a possible 

consequential set

We might also hypothesise that 
some properties are shared by 

elephants and rhinos



First order hypotheses, H1

Every cluster in the tree 
counts as a possible 

consequential set

All the large herbivores 
is also a reasonable 
consequential set



Let’s be a little more precise about 
what we mean by “first order”

“first order” hypotheses 
cover a “single” simple 
entity with respect to 

the structure



We’ve encountered hypothesis spaces 
with higher order hypotheses too

Higher order 
hypotheses that are 

built from multiple such 
entities

“first order” hypotheses 
cover a “single” simple 
entity with respect to 

the structure



Second order hypotheses, H2



Second order hypotheses, H2



Third order hypotheses, H3



Third order hypotheses, H3



Now let’s make a Bayesian model

To do this we’ll need a prior over hypotheses, P(h), 
and each hypothesis must define a distribution over 

possible observations P(x|h), i.e. the likelihood.



Use the prior to enforce simplicity

P (h) / 1

�k

Scaling factor (φ>1) determining 
the extent of the simplicity bias 

(i’ll use φ=20)

Number of clusters k 
combined in the current 

hypothesis (i.e., the order of 
the hypothesis)

Prior



Use the likelihood to enforce data fit

P (x|h) /

8
><

>:

1

|h| if x 2 h

0 otherwise

P (h) / 1

�k

Prior
Likelihood

Our “usual” likelihood: every 
object within the consequential 

set is equally likely to be 
“observed” to have the property 



Object X1 has property P
Object X2 has property P

…

Object Xk has property P

Object C has property P

Compute Pr( C | X1…Xk) 

The probability that the object 
in the conclusion has property 
P given that all the objects in 

the premises do

Generalisation probability



Object X1 has property P
Object X2 has property P

…

Object Xk has property P

Object C has property P

Compute Pr( C | X1…Xk) 

MATHS HERE

Generalisation probability



Code for the model 
(animals.R)



Illustrations of the model at work
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Link to last lecture
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Link to last lecture
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Two rectangles. Posterior = 30%

Just like previous examples, a 
small amount of data leads to 
to prefer simpler hypotheses 
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But with more data it becomes 
quite possible to transfer belief 

to composite hypotheses



Qualitatively important phenomena in 
human inductive reasoning

(from Osherson et al 1990)



Deductive reasoning problems

All humans are mortal
Socrates is human

Therefore, Socrates is mortal

Premises

Conclusion



Inductive reasoning problems

Cats are mortal
Dogs are mortal

Therefore, Chimpanzees 
are (probably) mortal

Premises

Conclusion



Premise-conclusion similarity

cow

rhino
elephant

premises are all similar to the conclusion

strong



Premise-conclusion similarity

cow

rhino
dolphin

premises are quite dissimilar to the conclusion

weak
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Premise diversity

cow

seal chimp

these are dissimilar to each other

strong

neither is especially 
similar to this



Premise diversity

cow

horse chimp

these are similar to each other

weak

neither is especially 
similar to this
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Premise monotonicity*

horse

chimp
squirrel

modest



Premise monotonicity*

horse

chimp

stronger

adding premises 
usually (not always) 

strengthens arguments

squirrel

elephant
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A more quantitative data fitting exercise
(see Sanjana & Tenenbaum 2003)



Model predictions on the x-axis 
Human endorsement rates for specific 

arguments on the y-axis 
!

The Bayesian model does surprisingly 
well at predicting human judgments



Other models based 
on simple similarity-

based heuristics don’t 
do quite as well



A unified perspective on deductive 
reasoning and inductive reasoning

(Lassiter & Goodman 2012, 
see also Oaksford & Chater 2007)



This is (sensible) inductive reasoning

Cows have X 
Horses have X 

!
Therefore, it is plausible that 

elephants have X



This is (incorrect) deductive reasoning

Cows have X 
Horses have X 

!
Therefore, it is a certainty that 

elephants have X



The difference?

Cows have X 
Horses have X 

!
Therefore, it is plausible that 

elephants have X

Cows have X 
Horses have X 

!
Therefore, it is a certainty that 

elephants have X

In linguistics, this is called an 
epistemic modal frame



Proposal: the only difference 
between inductive reasoning 
and deductive reasoning is 
that a different standard of 

proof is required.

!
It is plausible that 
elephants have X

It is a certainty that 
elephants have X

“plausible” requires the conclusion 
to be 55% probable?

“certain” requires the conclusion 
to be 95% probable?



Proposal: the only difference 
between inductive reasoning 
and deductive reasoning is 
that a different standard of 

proof is required.

For any given argument, the 
endorsement probability e is 
some monotonic function of 

the generalisation probability g 
that depends on the frame f



Proposal: the only difference 
between inductive reasoning 
and deductive reasoning is 
that a different standard of 

proof is required.

For any given argument, the 
endorsement probability e is 
some monotonic function of 

the generalisation probability g 
that depends on the frame f

e = g↵(f)

endorsement 
probability for the  

conclusion in frame f

generalisation 
probability for the  

conclusion

standard of 
proof required 
in this frame



Ambitious “power law” prediction:  
!

For any argument A and any pair of frames X and Y, 
the endorsement probabilities for A in frames X and Y 

are related by some positive power r  

e(A,X) = gA
↵X

= gA
r↵Y

= (gA
↵Y )r

= e(A, Y )r



More psychologically critical prediction: frame monotonicity.  
!

If argument A is endorsed more than argument B in frame X, then it 
must also be endorsed more in frame Y

e(A,X) > e(B,X)

gA
↵X > gB

↵X

gA
r↵Y > gB

r↵Y

(gA
↵Y )r > (gB

↵Y )r

e(A, Y )r > e(B, Y )r

e(A, Y ) > e(B, Y )

()
()
()
()
()



How likely are “deductively valid” 
arguments to be endorsed in 

different frames?



How likely are “deductively invalid” 
arguments to be endorsed in 

different frames?



The ordering of the frames looks about the same for 
both argument types. Suggests frame monotonicity 

holds. But we can do better…



Endorsement rates plotted for 
individual arguments, in two separate 
frames (“certain” and “none provided”) 

It’s noisy, but looks pretty linear.  
!

That satisfies monotonicity, and is 
consistent with a power law (though it’s 
kind of weak evidence for a power law)



Here it is more generally



Summary

• Extending the inductive generalisation model 

• Hierarchical clustering to obtain tree structures (rather than spaces) 

• Composite hypothesis spaces  

!

• Extended the tasks considered 

• We’re not just modelling “simple” stimulus generalisation, we’re also 
talking about inductive reasoning tasks more broadly 

• Presented some evidence that human deductive and inductive 
reasoning can both be captured within this framework
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