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The lotto problem	

(“this is computer science and not just 

maths, right?”)



Bizarro lotto inference game

• The Bizarro company runs a lotto. 	


• Each day they announce a winning number, x	


• The winning number is an integer from 1 to 100 	


• But, during any given week, the winning number is 
chosen at random from an unknown range between l 
and u. 	


• In other words: 1 ≤ l ≤ x ≤ u ≤ 100	


• At the end of the week, the numbers l and u are 
revealed, and new value chosen.



Bizarro lotto inference game

• An example...	


• On Sunday, the company chooses l = 15, u = 39. 	


• But they don’t tell these numbers to anyone.	


• They then run the lotto during the week…	


Mon:   31,  	


Tue:    15,  	


Wed:  37,  	


Thu:   20, 	


Fri:     20	


• On Saturday, the company reveals l and u



The bookie’s problem

• A friend of mine wants to offer side bets. 	


• Anyone can select a number y on any day of the week, 
and if y is between l and u, they win	


• If he wants all possible bets to be fair, what odds 
should she offer for y?	


!

• Can we build a model to solve this?



What does the bookie need to know?

• Let X = (x1, …, xk) be the lotto data for k days	


• That is xi is the winning number on day i	


• Let C = (l, u) be the true range	


• Our bookie needs to know the probability that y 
is in C, given that we’ve seen data X so far,



Sample space and hypothesis space

• Sample space	


• The lotto numbers are between 1 and 100	


• Sample space X is the set (1, 2, 3, … , 100).	


!

• Hypothesis space	


• Each hypothesis h specifies a possible choice of 
integers l and u, such that 1 ≤ l ≤ u ≤ 100	


• So H is the set of all such choices	


• There’s 5050 of these! Time for some coding…



• The company chooses the true values at random, 
so P(h) is uniform across the 5050 hypotheses

Specify the prior distribution

P (h) / 1

|H| =
1

5050



• Each winning number x is selected uniformly at 
random from the range (l, u)	

!

• Notation:	


• Let |h| = u – l + 1 be the size of h	


• and               means l ≤ x ≤ u	

!

• Likelihood for a single observation:

The likelihood



The likelihood for multiple observations

• The lotto numbers are independently drawn from 
the range between l and u 	


• If h is the correct hypothesis about the range, then 
we can just multiply the individual probabilities...



The likelihood for multiple observations

• It's important to understand what's happening 
here	


• Here's a graphical illustration:

h

x1 x2 x3 x4

All of the winning numbers 
(x) are "generated" from 

the true hypothesis h



The likelihood for multiple observations

• It's important to understand what's happening 
here	


• Here's a graphical illustration:

h

x1 x2

Everything you need to 
know about the probability 
of x1 value is captured by 
h ... i.e., if you know h, then 
x2 tells you nothing new 

about x1



The likelihood for multiple observations

• It's important to understand what's happening 
here	


• Here's a graphical illustration:

h

x1 x2
We say that x2 and x1 are 

conditionally independent given h



The likelihood for multiple observations

• It's important to understand what's happening 
here	


• Here's a graphical illustration:

h

x1 x2

Mathematically, this means that the 
likelihood function factorises as 

follows:	

!

P(x1, x2 | h) = P(x1 | h) P(x2 | h) 



The likelihood for multiple observations

• It's important to understand what's happening 
here	


• Here's a graphical illustration:

h

x1 x2

In our example, the multiplication is 
really, really simple:	


!
P(x1, x2 | h) = P(x1 | h) P(x2 | h) 

!
                        = ( 1 / |h| ) ( 1 / |h| )  



We can now solve our inference problem
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• To calculate the probability that y falls within the 
true range C 	


!

!

!

• where                   equals 1 if y is within h, and 
equals 0 if it doesn’t

Answering the bookie’s question
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Demonstration: lotto.R

(FYI: the lotto problem is formally equivalent to an interesting 
psychological problem that Amy will talk about later)



Winning at battleships	

(“Ockham’s razor”)



Ockham’s razor

• What is it?	


• “Do not multiply entities beyond necessity”	


• The “simplest” explanation that “fits the data” is most 
likely to be correct	


!

• How do we formalise it?	


• We need to understand what we mean by simplicity	


• And we need some rule that favours it	


!

• Formalising simplicity is hard!	


• I’ll show you the easy way,  and (maybe) talk in passing 
about the hard way…



Generalised battleships!

One small ship 



Generalised battleships!

One large ship 



Generalised battleships!

Three small ships 



On each turn, you get to see a 
randomly sampled “hit”



consistent with many 
possible observations	

(121 squares covered) 	


consistent with very few 
possible observations	

(12 squares covered)

consists of few 
distinct “entities”	


(1 ship)

consists of many 
distinct “entities”	


(4 ships)



Which of the following is the “simplest 
explanation” that is “consistent with 

data?”



1 entity, 60 squares covered



2 entities, 30 squares covered



4 entities, 22 squares covered



Simplicity: the Bayesian view

Prior probability is 
“proportional to” 1

Choose a prior to favour simplicity: 
prior probability decreases as a 

function of the number of entities
P (h) / 1

Ne

Prior probability is 
“proportional to” 1/3



preferred by the prior

1 1

1/4 1/4



Fitting the data: the Bayesian view

P (x|h) =
⇢ 1

Ns
if x 2 h

0 otherwise

Each of these has 
probability 1/9

Each of these has 
probability 0

The likelihood 
function assigns 

probability to data



P (x|h) =
⇢ 1

Ns
if x 2 h

0 otherwise

1/9

The likelihood 
function assigns 

probability to data

1/33
Better fit!

Fitting the data: the Bayesian view



P (x|h) =
⇢ 1

Ns
if x 2 h

0 otherwise

0

The likelihood 
function assigns 

probability to data

1/33 Better fit!

Fitting the data: the Bayesian view



preferred by the 
likelihood

1/12

1/12

1/121

1/121



Bayesian Ockham’s razor

P (h|x) / P (x|h)P (h)

=
1

Ns
⇥ 1

Ne

Likelihood enforces data fit	

Prior enforces simplicity	


Posterior enforces Ockham’s razor



preferred by the 
likelihood

preferred by 
the prior



preferred by the 
posterior



How much is it preferred? 	

(demo code: battleships1.R)



prior



posterior after one 
observation



posterior after two 
observations



posterior after three 
observations

does 99.5% feel extreme?	

it should: most people 

are “conservative” 
relative to Bayes in this 

sort of problem



posterior after four 
observations



All possible 1-ship and 2-ship solutions in 
a 10x10 grid	


(demo code: battleships2.R)



Larger hypothesis space

• In a 10x10 grid, there are:	


• 3025 distinct rectangles	


• 5,009,400 pairs of non-overlapping rectangles	


!

• Simplicity prior: set P(h) so that	


• Total prior probability of 1 rectangle is 67%	


• Total prior probability of 2 rectangles is 33%

P (h) =
1

3025
⇥ 2

3
P (h) =

1

5009400
⇥ 1

3

if h contains one rectangle if h contains two rectangles



After one observation
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One rectangle. Posterior = 65%
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Two rectangles. Posterior = 35%

One observation tells you a lot about possible locations 
(dark squares), but the posterior probability of 1 vs 2 

rectangles hasn’t moved much from the priors
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One rectangle. Posterior = 70%

After two observations
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After three observations
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One rectangle. Posterior = 27%

After six observations

At this point the evidence is moderately convincing that 
there are probably two rectangles here
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One rectangle. Posterior = 58%

After seven observations

But it doesn’t take much to shift beliefs a long way!



Simplicity from an algorithmic complexity 
theory perspective



Simplicity = compressability

• Minimum description length principle	


• Simple things are short things	


• Specifically, the more you can compress something 
(using some “sensible” algorithm), the simpler it is

1001010111011
1011101011011
1111111111010
1001111010011
1100110110011

1111111111111
1111111111111
1111111111111
0000000000000
0000000000000

complex simple



• Kolmogorov complexity	


• The complexity K(s) of string s with respect to 
programming language L is the length in bits of the 
shortest program that prints s and then halts	


• The language L doesn’t actually matter much	


• The tricky part is that K(s) is uncomputable	


!

• Solomonoff’s universal prior	


• Each hypothesis is encoded as a string h	


• Optimal version of Ockham’s razor uses the prior:

The idealised version

P (h) / 2�K(h)



• Use a small set of Turing machines, instead of 
considering all possible programs written for a 
universal Turing machine (Dowe, Wallace)	


• Use statistical considerations to figure out what 
prior minimises your worst-case loss (Rissanen) 	


• Use a real compression algorithm to do the work 
(e.g. Lempel-Ziv-Welch)	


• Use something that intuitively seems to capture 
the idea of simplicity (most of us!)

Various practical suggestions


