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Why start with Bayesian inference?

• The course needs it!	


• A lot of the psychological models rely directly or 
indirectly on Bayesian statistical methods	


• We'll start with the basics in these lectures, and move 
to the more complex stuff later	


!

• It's just plain useful	


• A huge chunk of modern statistics relies on Bayes	


• Probabilistic AI is highly Bayesian	


• Etc.



Introduction to probability



Defining probability

• Intuitively: the "chances" of something happening	


• Easy to convert to a formal system	


• e.g., Kolmogorov axioms, Cox axioms 	


!

• P(X) is a number between 0 and 1	


• P(X) = 0 means X definitely will not happen	


• P(X) = 1 means X definitely will happen	


• + some other rules that we'll discuss



Understanding probability

• Not simple to interpret psychologically	


• Two main schools of thought	


• Probability = long run frequency	


• Probability = degree of belief



Long run frequency

• The "frequentist" view...	


!

!

!

!

!

!

• ... probability can only be assigned to events that 
can be replicated (e.g. coin flipping) not to one-off 
events (e.g., the mass of the Higgs boson)



Bayesian probability

• Degree of belief held by an intelligent agent...	


!

!

!

!

!

!

• ... probability does not exist as a property of the 
objective world, it only expresses our beliefs about 
what will happen in the world 



Big argument in statistics!

• Frequentist probability 	


• Orthodox null hypothesis testing	


• Probability cannot be assigned to scientific theories	


!

• Bayesian probability	


• Bayesian methods	


• Probability can be assigned to any hypothesis	


!

• We'll sidestep the controversy	


• Focus on Bayesian methods because they're useful!



Other rules for probability

• Law of total probability:	


• Probabilities must sum to one, assuming the "sum" is 
across mutually exclusive and exhaustive possibilities 
(i.e. exactly one of them must occur)



An example

Blue jeans Grey jeans Black jeans Black suit Blue tracksuit

The Probability of My Pants

Event

Pr
ob

ab
ilit

y 
of

 E
ve

nt

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

• Suppose I own five sets of pants	


• I always wear pants (probably for the best)	


• I can't wear more than one pair of pants	


• So the "pants probabilities" sum to 1



Other rules

• Probability that "not A" occurs 	


• P( not A )  =  1 - P(A)	


!

• Probability that "either A or B" occurs	


• P ( A or B )  =  P(A) + P(B) - P(A and B)	


!

• Probability that "A and B" both occur	


• P( A and B ) = P(A) P(B | A)	


• P (A and B) is usually written as P(A, B) 



Conditional probability, P(A|B)

• Probability that A is true, given that B is true	


• Not the same thing as P(A,B) or P(A)	


• Often the cause of some confusion



P( blue ) = 0.5



P( blue, circle ) = 0.333



P( blue | circle ) = 0.667

The squares are ignored, 
because it is a given that the 

object is a circle



Learning via Bayesian inference



Bayes' rule

• Consider two events,  A and B	


• We can write the joint probability P( A , B ) in two 
different ways:	


!

!

!

• Therefore,	


!
!

• And so,



Bayesian inference

• The trick:	


• Let B = "hypothesis h about the world is true"	


• Let A = "data set d is observed"	


!

• What it implies:	


!

!

!

• Bayes' theorem gives a learning rule... what does 
data d tell us about the plausibility of hypothesis h



Bayesian inference

P(h) : the prior probability 
that h is true

P(d) : discussed later

P(d|h) : the likelihood of 
observing d if h is true

P(h|d) : the posterior 
probability that h is true



The priors P(h) describe the learner's 
initial beliefs

P(burglar) = low



The likelihood P(d|h) is the plausibility of 
the data if the hypothesis is true

P( data | burglar ) = moderate 

data = (	

smashed my window, 	

holding my TV,	

in my lounge room	


 )

P( data | not burglar ) = very low 



The posteriors P(h|d) describe the 

P(burglar | data) = high



More formally

• The data d belongs to a sample space D of 
possible data sets that you might have observed	


• The hypothesis h belongs to a hypothesis space H 
of theories that might be true	


• The prior distribution P(h) is a probability 
distribution over possible hypotheses	


• Every hypothesis h specifies its own likelihood 
function P(d|h), which is a probability distribution 
over possible data sets



Probability of the data, P(d)

• Simplest way to think about it is to note that the 
posterior distribution P(h|d) needs to be a proper 
probability distribution	


• So the sum (over h) of P(h|d) must equal 1	


• Gives:



Side note

• Notational issue	


• Sometimes in this class we'll use d for data	


• At other times we'll denote data with x 



The taxi cab problem	

(a.k.a. “hey, the prior matters!”)



Most (80%) of the taxis in Simpletown are green, with the 
rest (20%) being yellow. In a traffic accident involving a hit-
and-run taxi, a witness claims the taxi was yellow. Careful 
testing shows that the witness can successfully identify the 
colour of a taxi only 75% of the time due to bad eyesight. 	


!
On the balance of probabilities, should we hold Yellow Taxi 

Company liable?



Specification of the problem

• Hypothesis space	


• h1:  taxi is yellow	


• h2:  taxi is green	


!

• Priors 	


• P(h1) = 0.2	


• P(h2) = 0.8



Specification of the problem

• Hypothesis space	


• h1:  taxi is yellow	


• h2:  taxi is green	


!

• Priors 	


• P(h1) = 0.2	


• P(h2) = 0.8

• Data	


• d: witness says yellow	


!

• Likelihood	


• P(d | h1) = 0.75	


• P(d | h2) = 0.25



No. Only a 43 percent 
chance it was yellow! 



No. Only a 43 percent 
chance it was yellow! 

psychology: people ignore the base 
rate (prior) in this problem 



The Monty Hall problem	

(a.k.a. “the likelihood matters too!”)



You’re a contestant on a game show, and there is a prize 
behind one of three doors, labelled A, B and C.  The host 

asks you to pick a door, and you choose A. He then 
opens up door B, and shows you that there is no prize 

there. Finally, he asks if you would like to switch to door 
C, or if you want to stay with door A. 	


!
What should you do? Does it matter?



You should switch to door 
C. It has a 2/3 chance of 

winning



This problem is all about the likelihood



if A is correct if B is correct if C is correct

host opens A

host opens B

host opens C

The “hypothesis space”

The “sample space”

This problem is all about the likelihood



if A is correct if B is correct if C is correct

host opens A 0% 0% 0%

host opens B

host opens C
You chose A... so an intelligent 

host won't open A 

This problem is all about the likelihood



if A is correct if B is correct if C is correct

host opens A 0% 0% 0%

host opens B 0%

host opens C 0%

The host isn't going to open 
the correct door... defeats the 

point of offering a choice

Host behaviour is not arbitrary:



if A is correct if B is correct if C is correct

host opens A 0% 0% 0%

host opens B 0%

host opens C 0%

If you were originally correct (in selecting A), 
then the host has two options... but if B or C 

is true, the host has only one option

Host behaviour is not arbitrary:



if A is correct if B is correct if C is correct

host opens A 0% 0% 0%

host opens B 50% 0% 100%

host opens C 50% 100% 0%

If the host has no other biases at all, here's 
what we end up with as the likelihoods

Host behaviour is not arbitrary:



if A is correct if B is correct if C is correct

host opens A 0% 0% 0%

host opens B 50% 0% 100%

host opens C 50% 100% 0%

If your choice of A was wrong, then the host 
really was more likely to have opted to open 

door B... so the host's behaviour is 
informative

Host behaviour is not arbitrary:



if A is correct if B is correct if C is correct

host opens A 0% 0% 0%

host opens B 50% 0% 100%

host opens C 50% 100% 0%

Host behaviour is not arbitrary:

psychology: people ignore the 
likelihood in this problem! 



Suspicious coin flips	

(a.k.a. “is there any psychology in this???”)



Notation

• Suppose we're flipping coins, and are trying to 
work out whether or not a coin is biased towards 
heads (H) or tails (T) 	


• Denote P(H) = θ 	


!

!

!

!

!

• Now let's flip the coin five times...



HHTHT

HHHHH

Two possible data sets...



Comparing two hypotheses

• Suppose we have only two hypotheses:	


• h1:  θ = .5      "this is a fair coin"	


• h2:  θ = 1       "the coin always comes up heads"	


!

• Bayesian inference:	


!

!

!

• This is easy to compute (only two hypotheses!)	


• But I want to show a slightly different perspective



Comparing two hypotheses

prior odds ratiolikelihood ratioposterior odds ratio

• Posterior odds ratio:	


• Relative plausibility of two hypotheses	


• Divide the posterior probability of hypothesis 1 by the 
posterior probability of hypothesis 2	


• Can be used when there are lots of hypotheses	


• The "nasty" denominator term vanishes...



Comparing two hypotheses

• Suppose the prior odds are 999 to 1 in favour of 
the fair coin... Not completely unreasonable: most 
coins are pretty fair. 

=999



Data: HHTHT

• Hypothesis 1 (fair coin) says this is just as likely as 
any other sequence, and has a 1/32 chance	


• Hypothesis 2 (always heads) says it's impossible, 
and so it's probability 0	


!

!

!

!

!

!

• Posterior odds infinite... h1 is definitely superior

=1/32

=0



Data: HHHHH

• Hypothesis 1 (fair coin) says this is just as likely as 
any other sequence, and has a 1/32 chance	


• Hypothesis 2 (always heads) says it's the only 
possibility, and so it's probability 1	


!

!

!

!

!

• Posterior odds still favour the fair coin, by a factor 
of about 30:1.  The data are not informative 
enough to overwhelm the prior... yet

=1/32

=1

=999



Data: HHHHHHHHHH

• Hypothesis 1 (fair coin) says this is just as likely as 
any other sequence, and has a 1/1024 chance	


• Hypothesis 2 (always heads) says it's the only 
possibility, and so it's probability 1	


!

!

!

!

!

!

• Posterior odds now favour the "always heads" 
hypothesis, though only barely

=1/1024

=1

=999



We can use this to do psychology!

• HHHHH looks like a “mere coincidence” while 
HHHHHHHHHH makes us suspicious.	


• From a cognitive science perspective this gives us a 
measure of the strength of the prior belief…	


• If τ is the threshold (odds ratio) for suspicion, and x is 
the shortest suspicious sequence, the prior odds for a 
fair coin is roughly 	


!

!

• If τ = 1 and x is somewhere between 10 and 20 heads, 
prior odds are roughly between 1:1,000 and 
1:1,000,000. 



Structure in human beliefs

• Why is HHTHT "fair" but HHHHH isn't? 	


• Structured prior beliefs...	


• We only get suspicious when we can construct a 
causal theory for the supposed “trick coin” hypothesis.	


• It is easy to imagine how a trick “all-heads” coin could 
work: low (but not negligible) prior probability.	


• It is hard to imagine how a trick “HHTHT” coin could 
work: extremely low (genuinely negligible) prior 
probability.



The main point!

• We want to use Bayesian inference as a tool to 
learn about how people think	


• We don't really believe that humans actually calculate 
these quantities... psychological models aren't that 
absurdly literal	


• But by coding up these models, we learn something 
interesting about how the mind operates


