
Exercises: Probabilistic models of cognition

Before starting these exercises please clone the chdss2018 GitHub repository by typing:

git clone https://github.com/cskemp/chdss2018.git

at the command line, or by using the “clone or download” button at https://github.com/cskemp/
chdss2018

1 Coughing friend

The script for this exercise is day3 probmodels/coughingfriend/coughingfriend.R in the chdss2018
The prior in the script indicates that P (cold) = 0.46, P (emphysema) = 0.04, and P (stomach upset) =
0.05.
The likelihood in the script indicates that P (coughs|cold) = 0.4, P (coughs|emphysema) = 0.4, and
P (coughs|stomach upset) = 0.05.

1. Given the prior and likelihood specified above, use Bayes rule to calculate P (cold|coughs) by
hand.

2. Run the script to generate plots showing the prior, the likelihood and the posterior. Use the
plot to check your calculation from the previous question.

3. The prior and posterior distributions sum to 1, but the likelihood function does not. Should
it? Why or why not.

4. Change the code so that the prior is uniform. Generate the plots again — does the posterior
match your intuitions about what should happen if the prior were truly uniform?

5. Change the code to use the original prior but adjust the likelihood so that coughing is
equally probable for each disease (e.g. P (coughs|cold) = 0.4, P (coughs|emphysema) = 0.4,
and P (coughs|stomach upset) = 0.4). Generate the plots again—does the posterior match
your intuitions about what should happen if the likelihood were truly uniform?

6. (ADVANCED) What if John might be healthy (ie John might have none of the diseases)?
Change the model accordingly.

7. (ADVANCED) What if John might be healthy, but might also have multiple diseases? Change
the model accordingly.



2 The Number Game

The script for this exercise is day3 probmodels/numbergame/numbergame.R

1. Run the script to generate plots showing generalizations for 4 models that represent all
possible combinations of two priors (maths prior and uniform prior) and two likelihoods
(strong and weak sampling). The plots show generalizations after the models observe three
positive examples (4, 8 and 12). Compare the generalizations of the two models in the left
column (strong maths and weak maths). Does the likelihood (strong vs sampling) make a
qualitative difference? Explain any difference that you observe.

2. Compare the generalizations of the two models in the top row (strong maths and strong
uniform). Does the prior make a qualitative difference? Explain any difference that you
observe.

3. Try out some different sets of observations and see what generalizations the models with a
uniform prior make (i.e. models in the right column). How would you describe the way in
which the model generalizes to unobserved examples?

4. (ADVANCED) Consider a combined prior that is a weighted average of the uniform prior
and the maths prior. This combined prior assigns some probability to all possible hypotheses
but higher probability to the mathematical hypotheses. What kinds of inferences would this
combined prior lead to? Adjust the code to add strong combined and weak combined models
to the four that are already there.

5. (ADVANCED) The code does not include interval-based hypotheses (e.g. numbers between
2 and 5) like those considered by Tenenbaum. Implement a model with an interval-based
prior. As a next step, implement a model with a prior based on a weighted combination of
the maths prior, the interval-based prior, and the uniform prior.

6. (EVEN MORE ADVANCED) We specified the mathematical prior by writing down a “laun-
dry list” of hypotheses. This seems a bit unsatisfying – can you think of a better way to
specify a prior over mathematical concepts?

3 The Foodweb Problem: Inference by Enumeration

The script for this exercise is day3 probmodels/foodweb/foodweb.R. The script implements two
inference methods:

1. Inference by enumerating the entire hypothesis space

2. Inference by sampling hypotheses from the prior

For this exercise set the flag at the top of foodweb.R to

inferencemethod <- "enumerate"

1. The function p h() computes the prior probability of a hypothesis by multiplying 7 terms
together. Make sure you understand what these seven terms are and why they are there.



2. Run the script to compute generalizations over the foodweb given that kelp does not have
the disease but makos do. You should see that sandsharks are less likely to have the disease
than dolphins and tuna – why?

3. Suppose that the observation vector is empty: i.e.

obs <- list()

What generalizations do you now expect? If you run the script you should see that makos
are more likely to have the disease than kelp – why? You should also see that humans are
less likely to have the disease than makos – why?

4. Suppose now that the observation vector specifies only that kelp have the disease: i.e.

obs <- list(kelp = 2)

Derive by hand the probability that herring have the disease. Check your answer by running
the script.

5. Try playing around with the base rate and transmission rate parameters. Do the model’s
generalizations change as you might expect?

6. (ADVANCED) Suppose now that the observation vector specifies only that herring have the
disease: i.e.

obs <- list(herring = 2)

Derive by hand the probability that kelp have the disease. Check your answer by running the
script.

7. (MORE ADVANCED) The likelihood function in the script (p obs given h() ) assumes weak
sampling. Implement a likelihood function that assumes strong sampling and try it out on
some observation vectors that include only positive examples: e.g.

obs <- list(kelp = 2, mako = 2)

8. (MORE ADVANCED) How could the model be adjusted to remove the assumption that the
base rate and ttransmission rate are known in advance?

4 The Foodweb Problem: Inference by sampling from the prior

For this exercise set the flag at the top of foodweb.R to

inferencemethod <- "sample"

1. The function sample h() samples a hypothesis h from the prior P (h). First the value for kelp
is sampled, then herring, and so on. Why do the values need to be sampled in this order?



2. After sampling 1000 samples the code only uses those that are consistent with the observation
vector. Why?

3. Set the observation vector to

obs <- list(kelp = 1, mako = 2)

and run the script. Compare the output to what you saw when you computed the same set
of predictions using enumeration as the inference method.

5 The Foodweb Problem: Inference by sampling from the poste-
rior using JAGS

In this exercise we’ll use a program called JAGS to sample directly from the posterior P (h|obs).
The script for this exercise is day3 probmodels/foodweb/foodweb jags.R. This script relies

on a file called foodweb.bug which specifies the model of interest.

• Look at foodweb.bug – see if you can understand how this file specifies a distribution over
all 7 variables in the model (ie all 7 species in the foodweb).

• Set the observation vector to

obs <- list(kelp = 1, mako = 2)

and run the script. Compare the output to what you saw when you computed the same set
of predictions using enumeration as the inference method.

6 Sampling Frames: Spheres of Sodor

The files for this section are in the day3 probmodels/samplingframes/model/code directory of
the chdss2018 repository.

Throughout we’ll assume that there are seven categories that include spheres of seven different
sizes. The mean of category ci is the proportion of spheres in that category that have a plaxium
coating.

1. Run the samplefromprior.R script a few times to generate samples from the prior over
category means. Does this prior capture the intuitive expectations that you bring to the
spheres of Sodor problem? For example, the prior assigns some probability to U-shaped
curves and other curves with one or more turning points: is this reasonable?

2. Just as we did for the foodweb problem, we could compute model predictions by sampling
from the prior. But instead we’ll compute predictions using JAGS. Run simulations.R to
generate six sets of samples then run plotsims.R to plot the results. Compare the model
generalizations to the analogous figure showing human generalizations from yesterday.

category.bug and property.bug specify models that assume category sampling and property
sampling respectively. Look first at category.bug. The model specifies how a vector of



category means is generated, and how the actual observations (i.e. whether each observed rock
has a plaxium coating) are generated given these category means. Make sure you understand
the line

plaxium[i] ~ dbern(category_means[category[i]])

where plaxium[i] is the variable that indicates whether the ith observation has a plaxium
coating.

3. (ADVANCED) See if you can understand the model specification in property.bug. In par-
ticular look at the lines

denom <- sum(category_means * base)

for(i in 1:ncat) {

pcat[i] <- (category_means[i] * base[i]) / denom

}

where base includes base rates of the categories, and pcat[i] indicates the probability that a
sample from all plaxium-coated objects will belong to category i (ci). This section implements
the idea that

P (item in ci|item has plaxium) ∝ P (item has plaxium|item in ci)P (item in ci)

4. (MORE ADVANCED) Yesterday Dani showed that there are lots of interesting individual
differences in the data set. How could the model be adapted to allow for individual differences?


