
Day 3: Probabilistic models of cognition

1 Working with probability distributions

1. Marginalization: P (a) =
∑

b P (a, b)

2. Conditional probability: P (a|b) = P (a,b)
P (b)

3. Chain rule: P (a|b)P (b) = P (a, b)

4. Bayes rule: P (h|d) = P (d|h)P (h)
P (d)

5. Bayes rule with background knowledge: P (h|d, b) = P (d|h,b)P (h|b)
P (d|b)

2 Bayesian concept learning

Notation and problem formulation
• H = {h1, . . . , hM} is a hypothesis space of concepts.

• X = {x1, . . . , xn} is a set of n positive examples of some concept C that belongs to H
• A Bayesian learner’s beliefs about the identity of the unknown concept C are captured by

P (h|X) =
P (X|h)P (h)

P (X)
∝ P (X|h)P (h) (1)

Prior P (h)



• Total probability assigned to mathematical concepts is λ.

• Total probability assigned to magnitude concepts is 1− λ.

• Total probability assigned to all other concepts is 0.
Possible likelihoods P (X|h)
• Strong sampling:

p(X|h) =

{ [
1

size(h)

]n
if all xi are in h

0 otherwise

• Weak sampling:

p(X|h) =

{
1 if labels for all xi are consistent with h
0 otherwise

(2)

Prediction by hypothesis averaging
• Let HX be the set of all hypotheses that are consistent with the data X

• A Bayesian learner will make a prediction about an unlabeled item y by using

P (y ∈ C|X) =
∑
h∈H

P (y ∈ C|h)P (h|X) =
∑
h∈Hy

P (h|X) (3)

3 Bayesian networks

A Bayesian network (or Bayes net or directed graphical model) specifies a joint distribution
P (v1, . . . , vn).

The network includes:
• A directed acyclic graph G with a node for each variable Vi. You should aim to use graphs

where an edge from Vi to Vj means that Vi has a direct causal influence on Vj .

• A conditional probability distribution P (vi|pa(Vi)) that specifies how the value of Vi depends
on the values of its parent nodes Pa(Vi).

The joint distribution can be represented as

P (v1, . . . , vn) =
∏
i

P (vi|pa(Vi)) (4)

Why work with Bayesian networks?
• Bayesian networks help modelers define high dimensional distributions.

• Bayesian networks provide a concise way of representing probability distributions.

• Bayesian networks often support efficient inference.

• Bayesian networks are modular and therefore easy to extend.

• Bayesian networks can be used to define causal models that reason about interventions and
counterfactuals.

4 Inference by Sampling

Inference by sampling from the prior



For the food web problem, consider how we generalize to an unobserved node in the food web:
e.g.

P (humans|obs) =
∑
h

P (humans|h)P (h|obs) (5)

∝
∑
h

P (humans|h)P (obs|h)P (h) (6)

where the last step follows from Bayes rule.
Equation 6 can be approximated by drawing M samples {h1, . . . , hM} from the prior distribu-

tion P (h):

∑
h

P (humans|h)P (obs|h)P (h) ≈ 1

M

M∑
i=1

P (humans|hi)P (obs|hi) (7)

Sampling from the prior is often straightforward, but Equation 7 tends to work only for fairly
small problems.
Inference by sampling from the posterior

Equation 5 can be approximated by drawing M samples {h1, . . . , hM} from the posterior
distribution P (h|obs):

∑
h

P (humans|h)P (h|obs) ≈ 1

M

M∑
i=1

P (humans|hi) (8)

Sampling from the posterior is more difficult, but can be achieved using MCMC (Markov Chain
Monte Carlo) sampling as implemented by packages like JAGS. MCMC can be successfully applied
to relatively large problems.


