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Abstract

We propose and test a Bayesian model of property induction with censored evidence. A core model 

prediction is that identical evidence samples can lead to different patterns of inductive inference 

depending on the censoring mechanisms that cause some instances to be excluded. This prediction 

was confirmed in four experiments examining property induction following exposure to identical 

samples that were subject to different sampling frames. Each experiment found narrower 

generalization of a novel property when the sample instances were selected because they shared a 

common property (property sampling) than when they were selected because they belonged to the 

same category (category sampling). In line with model predictions, sampling frame effects were 

moderated by the addition of explicit negative evidence (Experiment 1), sample size (Experiment 

2) and category base rates (Experiments 3-4). These data show that reasoners are sensitive to 

constraints on the sampling process when making property inferences; they consider both the 

observed evidence and the reasons why certain types of evidence has not been observed.

Keywords: Inductive reasoning; Property inference; Categorization; Bayesian models
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1. Introduction

Inductive reasoning – the ability to make plausible guesses given inconclusive evidence – is one 

of the central topics in cognitive science. Traditionally, cognitive models of induction have focused on 

how the content of the observed evidence determines how people generalize novel properties. For instance, 

knowing that a rhino is similar to a hippo makes people more willing to believe that properties that are 

true of rhinos will also be true of hippos, while no such charity is afforded when generalizing from rhinos 

to koalas. Research in this area has revealed many important principles that guide inductive generalization 

(see Hayes & Heit, 2018 for a recent review). As well as similarity, factors such as the diversity, typicality 

and quantity of evidence, have all been shown to impact inductive inference. Formal mathematical models 

have been developed to account for each of these effects (e.g., Heit, 2007; Osherson, Smith, Wilkie, Lopez, 

& Shafir, 1990; Sloman, 1993).

A critical point that is often missed by extant theoretical work however, is that the evidentiary 

value of one’s observations depends on how they were selected or sampled (Hogarth, Lejarraga, & Soyer, 

2015). Expert testimony presented to the courts may be interpreted very differently if the expert was hired 

by the prosecution than if they were independently appointed by the court. In the first instance, the expert 

has (presumably) been selected based on what opinions they hold, whereas in the second instance they are 

(hopefully) chosen based on the authority they possess. In both cases, there is an implication that some 

potential data have been censored: the prosecution will choose not to present (i.e., censor) expert 

testimony that undermines the case, and a judge will disallow (i.e., censor) testimony from anyone that 

does not meet court standards.

The effects of data censoring have been studied extensively in fields such as statistics, machine 

learning, bioinformatics, and economics (e.g., Jessen, 1978; Little & Rubin, 2014). Models in each of 

these fields have been developed to explain how to make inferences based on both observed data and data 
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that has been systematically excluded from evidence samples. Until recently however, the issue of data 

censoring has generally been neglected in cognitive theories of reasoning. The overarching goal of the 

current work was to examine how people make property inferences based on samples of evidence where 

some portion of the relevant data has been systematically excluded from observation. To this end we 

develop and test a new theoretical model of property inference with censored samples.

1.1 Data Censoring, Sampling and Bayesian Reasoning

A growing body of evidence suggests that people’s inductive inferences are guided by their 

understanding of the sampling process – the method by which observations were generated or selected 

(e.g., Navarro, Dry, & Lee, 2012; Shafto, Goodman, & Griffiths, 2014; Tenenbaum & Griffiths, 2001; 

Voorspoels, Navarro, Perfors, Ransom, & Storms, 2015; Xu & Tenenbaum, 2007). Much of the previous 

work in this area has examined sampling processes as a form of social cognition: people reason differently 

when they believe data were selected by a helpful teacher than when data are selected randomly, or when 

deception is involved. This work has produced some notable findings. Ransom, Perfors and Navarro 

(2016) showed that adding positive evidence (instances that share a novel property) can either increase or 

decrease property generalization depending on whether the learner assumes that the evidence was sampled 

randomly or supplied by a helpful teacher. Likewise, the well-known effect of evidence diversity, whereby 

a property shared by dissimilar category members is more likely to be generalized than a property shared 

by similar instances (Kary, Newell, & Hayes, 2018; Osherson et al., 1990), depends in part on the 

assumption that the observed instances were the result of helpful sampling (Hayes, Navarro, Stephens, 

Ransom, & Dilevski, under review). These findings however, are typically limited to situations where the 

relevant sampling mechanism is social or communicative in nature.
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The current work takes the study of sampling processes in a novel direction, investigating how 

inductive inferences can be shaped by mechanistic sampling constraints that lead to data censoring. In 

statistics, such constraints are typically discussed in terms of sampling frames (Jessen, 1978), missing 

data, or data truncation and censoring (Little & Rubin, 2014). Such constraints are highly relevant to 

human reasoning and judgment outside of the laboratory, which more often than not, is based on a 

censored subset of the relevant data (Hogarth, et al., 2015). Despite its ubiquity, the question of how we 

do inference with censored samples has rarely been addressed in previous cognitive models (see Hahn & 

Oaksford, 2007; Hsu, Horng, Griffiths, & Chater, 2016 for notable exceptions). We begin by outlining 

our framework, and discuss connections with related work later in the paper.

1.2 A Bayesian framework for property inference with censored data 

The central claim made by Bayesian models of inductive reasoning and inductive generalization 

is that human inferences can be described as a form of statistical inference. The learner approaches the 

problem with a prior distribution P(h) defined over some class of possible hypotheses, and has some theory 

of the world that specifies the likelihood P(d|h) of observing data d if hypothesis h were true. The effect 

of sampling assumptions is captured in this framework by specifying different likelihoods for different 

sampling conditions: a helpful teacher does not select data d in a purely random way, for instance, so one 

should expect that the likelihood P(d|h) should be different when evidence is presented by a helpful 

teacher than when the same evidence arrives by a random sampling process (e.g., Navarro et al., 2012; 

Sanjana & Tenenbaum, 2003; Tenenbaum & Griffiths, 2001). In social reasoning contexts, the sampling 

model can be very complicated, insofar as it depends on the learner’s theory of mind in respect of the 

teacher (Shafto et al., 2014, Voorspoels et al., 2015; Xu & Tenenbaum, 2007). 
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In this paper we consider a class of Bayesian inductive reasoning models in which the data d are 

subject to a deterministic censoring mechanism defined by a simple survivor function S(d). For data that 

are not subject to censoring, S(d) = 1, whereas data subject to censoring the survivor function is S(d) = 0. 

If P(d|h) is the likelihood that data d would have been generated in an environment without censoring, 

then the probability of the learner observing this data in an environment where censoring operates is 

simply P(d|h) S(d). Applying Bayes’ rule, a learner who encounters data d and is aware that censoring 

process with survivor function S applies, will compute the posterior probability of hypothesis h as follows:

  (1)𝑃(ℎ│𝑑, 𝑆) ∝  𝑆(𝑑)𝑃(𝑑│ℎ)𝑃(ℎ)

This is illustrated schematically in Figure 1. As this figure illustrates, from the point of view of the 

reasoner, any characteristic of the observed data set  might be attributed to the censoring process  or to 𝑑 𝑆

underlying phenomenon itself, . ℎ

Figure 1. Outline of the Bayesian framework for inference with censored data

Though simplistic, this framework includes Bayesian strong sampling and weak sampling models 

(Tenenbaum & Griffiths, 2001) as special cases. Weak sampling occurs when the survivor function S(d)=1 

for all d, and strong sampling occurs when S(d)=1 for all members of a category and 0 otherwise. Indeed, 
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there is a sense in which the “censoring” framework reframes the core insight that the Tenenbaum and 

Griffiths (2001) model employed in a more general fashion. Nevertheless, by doing so we are able to make 

a number of key predictions about property induction tasks. 

1.2.1 The effect of sampling frames on property inference. 

One of the central predictions of the censored inference framework in Figure 1 is that the inductive 

generalizations that people make in a property induction task will depend on the survival function S(d), 

even when the data d presented to people does not change. To this end, we devised an experimental 

program in which different groups of participants were exposed to identical data samples selected via 

sampling schemes that give rise to different survivor functions. Borrowing from the statistics literature 

(cf. Jessen, 1978), we use the term “sampling frames” to refer to this manipulation. A category sampling 

frame for example, refers to the case where instances are included in the sample because they belong to a 

particular category, with the members of other categories excluded. By contrast, a property sampling 

frame restricts inclusion in the evidence sample to instances that share some target property. 

Consider a situation in which participants are shown a sample of instances that share a novel 

property (e.g., “small birds that have plaxium blood”) and asked to infer whether the property generalizes 

to other entities (e.g., large birds, mammals). Under a category sampling scheme, they would be told that 

the items were included in the sample because they are category members (small birds), implying that 

other animals were not eligible for inclusion, schematically illustrated in Figure 2a. In contrast, under a 

property sampling scheme exemplars were eligible for inclusion in the sample by virtue of the fact that 

they possess the property (plaxium blood), implying that plaxium negative animals were not eligible for 

inclusion, per Figure 2c.  
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Figure 2. Schematic illustrations of category sampling (panel a) and property sampling (panel c). Possible 
observations are coded in terms of whether they belong to a target category (C+ or C-) and whether they 
possess the novel property (P+ or P-). Grey boxes denote the censor (S(d)=0) and unshaded areas are 
uncensored (S(d)=1). Panels b and d illustrate how the presence of the censor changes the relative 
plausibility of two hypotheses (h1 and h2, denoted with ellipses) about what observations are possible. See 
main text for detail.

The implication for inductive generalizations are sketched out in Figures 2b and 2d. Consider two 

possible hypotheses about the extension of the property P. According to hypothesis 1 (h1), only the 

observed entities possess the property (e.g., only small birds possess plaxium blood) whereas hypothesis 

2 (h2) postulates that entities outside the category (e.g., large birds, mammals) can also possess plaxium 

blood. Under property sampling, a Bayesian reasoner will – typically, depending on the precise nature of 

the Bayesian model, consider h1 more plausible than h2. If there were animals besides small birds that 

could possess plaxium blood (as per h2), we ought to have observed some in our sample. The fact that we 
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do not see any such animals counts as implicit negative evidence, and accordingly is evidence for h1 over 

h2. In contrast, the same data collected under a category sampling scenario does not provide the same 

evidence: the absence of animals other than small birds can be explained by the operation of the censoring 

mechanism S(d). 

Although the illustrations in Figures 2b and 2d are schematic, they highlight the core Bayesian 

principle at work here: broadly speaking, the learner treats the data d as a random sample from the 

hypothesis h, operationalized by the ellipses in Figures 2b and 2d. The probability of observing any 

particular data set d is usually given by the likelihood P(d | h) (e.g., selecting a location at random inside 

the ellipse), so “larger” hypotheses assign lower probability to the data (the size principle: Tenenbaum & 

Griffiths, 2001). This is what drives the learner’s preference for h1 over h2 in a property sampling scenario. 

However, when data censoring is relevant, the likelihood also depends on the censor, P(d | h, S). Observed 

data are sampled at random only from uncensored locations (where S(d)=1). This makes no difference for 

property sampling, but it does matter for category sampling, because h1 and h2 now assign roughly the 

same probability to the observed data. 

In short, a key prediction of this framework is that – all else being equal – people should be more 

willing to generalize a novel property in a category sampling scenario than in a property sampling 

situation. Later in the paper we will introduce a specific Bayesian model that instantiates these ideas in a 

precise, quantitative fashion, but for the empirical section of the paper we avoid doing so to highlight the 

fact that the key predictions emerge from the core framework and are not dependent on the particular 

instantiation we adopt later. 

1.2.2 Experimental tests

There is some previous evidence suggesting that people treat category sampling differently to 

property sampling (Hayes, Banner & Navarro, 2017; Lawson & Kalish, 2009). Lawson and Kalish (2009) 
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for example, presented participants with a sample of animals (small birds) that shared a novel property 

and gave different groups cover stories that implied that the sample was selected either via category or 

property sampling. Those in the property sampling condition were less likely to generalize the property to 

other animals than those in the category sampling condition. Lawson and Kalish (2009) noted that these 

results could not be explained by existing models of induction (e.g., Osherson et al., 1990; Sloman, 1993), 

but provided no formal account of the effect of sampling frames. 

In contrast, narrower generalization from an observed sample collected via property sampling as 

compared with category sampling is a core prediction of our model. With this in mind, each of the 

experiments in this paper included a sampling frames manipulation. In each study we tested for the 

predicted empirical effect of sampling fames and compared the empirical data with formal predictions 

from our model. However, a major strength of the censored reasoning framework is that it goes beyond 

an explanation of the effects of sampling frames and makes a range of additional novel predictions about 

how frame effects on property induction will interact with other aspects of the sample. As detailed below, 

we examine model predictions about how sample frames interact with the provision of negative evidence 

(Experiment 1), sample size (Experiment 2) and category base rates (Experiments 3 & 4).

2. Experiment 1: Sampling frames and the effect of negative evidence

This experiment served two goals. First, as was the case for all four experiments reported in the 

paper (and the additional five referred to in the Appendix A), we tested our core theoretical prediction that 

generalization of a novel property will be narrower when the sample was collected via property as 

compared with category sampling. The paradigm for this study was adapted from Lawson and Kalish 

(2009). In the sampling phase, a sample of small birds was observed to have a novel property (“plaxium 

blood”), with the sample said to be selected via category or property sampling. Participants then judged 
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whether the property generalized to instances of other categories that varied in similarity to the observed 

sample. 

Figure 3. The effect of adding explicit negative evidence (C- P-) that escapes the censor (grey rectangle). 
Category sampling conditions are shown in the top row, property sampling on the bottom row. The left 
hand column depicts the “positive only” condition, and the right hand column shows the additional 
negative evidence that is introduced in the “positive + negative” condition. In all panels, the elliptical 
region schematically illustrates those data sets that might be expected to observe if P+ is generalizable 
from C+ to C-, and the markers show the data presented to participants.

Our second goal was to test an additional prediction of our data censoring model by manipulating 

whether the observed sample contained only positive evidence (20 small birds all with plaxium blood) or 

a mixture of positive and explicit negative evidence (20 small birds with plaxium blood and 5 other 

animals without plaxium blood). This is illustrated in Figure 3. As described earlier, when the learner only 

sees positive evidence from the category (C+P+), it is reasonable to generalize to other categories (C-P+), 

but only in the category sampling scenario (panel 3a) and not under property sampling (panel 3c). The 
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introduction of explicit negative evidence that bypasses the censor might be expected to reduce 

generalization in both cases (panels 3b and d), but the effect is much more pronounced for category 

sampling. Under property sampling, the explicit negative evidence adds little that is not already known 

from the implicit negative evidence. Accordingly, the theoretical prediction is that the introduction of 

additional negative evidence should attenuate any effect of the sampling frame, primarily by causing 

generalization to decrease in the category sampling condition. 

2.1 Method

2.1.1 Participants. 

One hundred university undergraduates (MAGE = 20.89 years, SD = 3.18; 63 females) participated 

for course credit. Equal numbers were randomly allocated to one of four conditions (category sampling - 

positive only, property sampling - positive only, category sampling - positive + negative, property 

sampling - positive + negative). In this and all subsequent experiments, individuals gave their informed 

consent for experimental participation. 

2.1.2 Materials and Procedure. 

The evidence samples and generalization items were depicted by color pictures of birds sourced 

primarily from Google Images and modified using Adobe Photoshop to eliminate background. In the 

sampling phase we used 10 color pictures of small, sparrow-like birds, with horizontal orientation 

reflected to produce a total of 20 images. For the positive + negative evidence condition an additional 5 

unique pictures of other animals (crow, seagull, eagle, squirrel, frog) were used in the sampling phase. 

For the generalization test six unique pictures were presented: a sparrow (similar but not identical to the 

sample instances), a pigeon, an owl, an ostrich, a mouse and a lizard. Pilot testing with participants who 

did not take part in the main study (N=19) examined the perceived similarity of test items to the sample 
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pictures of small birds. Pairwise similarity ratings (1 = not very similar, 10 = very similar) confirmed that 

the rank ordering of perceived similarity between test and sample items was sparrow (M = 8.0, SD = 1.72), 

pigeon (M = 6.44, SD = 1.92), owl (M = 5.78, SD = 2.05), ostrich (M = 4.28, SD = 1.90), mouse (M = 

2.67, SD = 1.65), and lizard (M = 2.33, SD = 1.61).

In the sampling phase, participants were told they were scientists studying animals on a previously 

unexplored island and that their task was to take samples to ascertain which animals had a novel biological 

property (“plaxium blood”). In the category sampling condition, participants were told that time and 

resource limitations were such that only a single category of small birds was sampled. In the property 

sampling conditions, they were told that only animals that had passed a screening test for the presence of 

plaxium blood were sampled (instructions were adapted from Lawson & Kalish, 2009, and are included 

in demonstration experiments located at http://compcogscisydney.org/exp/#vanish). All participants 

received the same sample information.

On each of 20 sampling trials participants could click on one of 50 on-screen boxes representing 

all the samples taken from the island. On clicking, the box contents were revealed – showing a sample 

instance, depicted by a unique picture of a small bird randomly drawn from the pool of small-bird images, 

and a statement about whether the instance was found to have plaxium blood. The order of presentation 

of this information differed in category sampling and property sampling conditions. In category sampling, 

when a box was examined the bird picture appeared and the participant was invited to click again to 

discover its plaxium status. In property sampling, the order of these steps was reversed. Nevertheless, after 

the positive evidence trials, all participants had observed exactly the same sample information – 20 small 

birds with plaxium blood. Those in the positive-evidence condition then proceeded to the generalization 

test. Those in the positive + negative evidence condition were told that a new expedition yielded five 

additional sample specimens. These samples were collected under different frames to the original samples 

http://compcogscisydney.org/exp/#vanish
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(category sampling: only animals that were not small birds sampled; property sampling: only animals that 

were plaxium negative). Participants again clicked on sample boxes and saw pictures of the 5 animals, 

none of which had plaxium blood.

In the subsequent generalization test, participants were told that 10 instances of each of a number 

of different types of animals from the island had now been collected. Their task was to estimate how many 

of these instances were likely to have plaxium based on the previously observed sample. The six 

generalization test instances were presented in random order and participants indicated their generalization 

estimate using radio buttons ranging from 0 to 10. 

2.2 Results and Discussion

Property generalization scores (out of 10) for all conditions are shown in Figure 4 (see the Open 

Science Framework Repository (OSF) https://osf.io/j4dxm/ for raw data from this and all other 

experiments). These data were analyzed using a 2 (sampling frames: category, property) x 2 (evidence 

type: positive only, positive + negative evidence) x 6 (test item) Bayesian mixed-model analysis of 

variance, with repeated measures on the last factor. The analysis for this and all subsequent experiments 

was carried out with the JASP v0.8.6 package using Cauchy default priors (Rouder, Morey, Verhagen, 

Swagman, & Wagenmakers, 2017). A major advantage of Bayesian approaches over many traditional 

analyses is that they allow for quantification of the statistical evidence in favor of or against the null 

hypothesis. The Bayes factor comparing two hypotheses is a ratio that expresses the relative probability 

of observing the data under one hypothesis than the other. We use the notation BF10 to refer to Bayes 

factors where BF10 > 1 indicates support for the alternative hypothesis and BF10 < 1 support for the null 

hypothesis. For example, BF10 = 10 indicates the data is 10 times more likely to have come from the 

alternative hypothesis than the null hypothesis, and BF10 = 0.1 indicates the opposite conclusion. We 

https://osf.io/j4dxm/
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follow the conventions suggested by Kass and Raftery (1995) that a BF10 between 3-20 (0.33-0.05) 

represents “positive” evidence for the alternative (or null) hypotheses respectively, a BF10 between 21-

150 (.049-.0067) represents “strong” evidence and a BF10 above 150 (<.0067) represents “very strong” 

evidence. 

The analysis revealed very strong evidence of a main effect of test item, BF10 > 10000. Figure 4 

shows that generalization scores were inversely related to the similarity of the test item to the evidence 

sample. There was also strong evidence of an effect of sampling frames, BF10 = 13.63. The figure shows 

that people generalized more narrowly under property sampling than under category sampling. This 

confirms the core prediction of our model and replicates the main finding of Lawson and Kalish (2009). 

The sampling frame effect did not interact with the test item factor, BF10 = 0.25. 

Figure 4. Mean generalization ratings for each test category. Bars represent +/-1 standard error.

There was very strong evidence of an effect of adding negative evidence, with lower generalization 

scores in the positive + negative than the positive only condition, BF10 > 10000. Evidence type also 
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interacted with test item similarity, BF10 = 652.79. Figure 4 shows that the positive-only and positive + 

negative conditions showed similar levels of generalization to the small bird test item, but that 

generalization was lower in the positive + negative condition for stimuli that were less similar to the 

observed sample. Notably, the type of evidence observed interacted with the sampling frame, BF10 = 4.64. 

As predicted, the difference in generalization between category and property sampling was attenuated 

when negative evidence about large birds was added to the sample. Figure 4 shows that the explicit 

negative evidence had its strongest effect on generalization in category sampling. This was confirmed in 

post-hoc comparisons between generalization scores in the positive evidence only and positive + negative 

conditions, where evidence of a difference was found for category sampling (BF10 > 10000) but not 

property sampling (BF10 = 1.38). 

This study tested two predictions of our censored sampling model. First, we showed that a 

providing a property sampling frame for a given evidence sample led to narrower property generalization 

than when the same sample was obtained via category sampling. This replicates the main finding of 

Lawson and Kalish (2009). However, unlike that earlier work, we have provided a formal model that 

explains this effect.

The second and entirely novel prediction of our model was that generalization following category 

sampling would be impacted more by adding explicit negative evidence than generalization following 

property sampling. This prediction was also confirmed. Providing evidence about instances that did not 

have the property narrowed generalization following category sampling because this evidence ruled out 

hypotheses about property extension (e.g., that the property generalized to large birds) that were still viable 

when only the positive instances were observed.1
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3. Experiment 2: The effect of sample size

Experiment 1 found evidence for a sampling frames effect, and demonstrated one way in which 

the effect can be manipulated: adding explicit negative evidence selectively influences generalization 

under category sampling. In this experiment we considered a manipulation expected to selectively 

influence generalization in the property sampling condition: sample size. According to our theory of the 

frames effect, a failure to observe the C-P+ case is more informative under a property sampling frame 

than under a category sampling frame. However, the strength of this effect depends on how many instances 

have been sampled. Under property sampling, observing that the first few instances known to share a 

property all belong to a single category may be attributed to chance, preserving the belief that the property 

may generalize to unobserved categories (see Figure 5 for a schematic illustration). The absence of certain 

types of category members in a large sample selected on the basis of property (like those used in 

Experiment 1), seems more conspicuous. It licenses the inference that the property does not extend very 

far beyond the observed sample. In other words, for small samples we should see little difference in 

property generalization between category and property sampling conditions. With increasing sample size, 

generalization under property sampling should diverge from category sampling – with property 

generalization increasingly restricted to items similar to the sample. 

This experiment tested the prediction about the modulating effects of sample size on sampling 

frames by asking participants in property and category sampling conditions to make repeated 

generalization judgments after observing samples of 2, 6, and 12 instances in a within-subjects design.2 

In this experiment we also changed the cover story, switching to a more novel conceptual domain (learning 

about the properties of rocks on the planet Sodor). There were two reasons for this. First, we wanted to 

test the generality of the sampling frames effect across cover stories. Second, we wanted to simplify the 

conceptual space for generalization. In Experiment 1 we examined property generalization across complex 
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animal categories that differ on a range of perceptual and conceptual dimensions. While studying 

generalization across such naturalistic categories is interesting, modeling the relevant similarity space and 

factoring this into predictions about property generalization is non-trivial (cf. Nosofsky, Sanders, & 

McDaniel, 2018). Because modeling of similarity spaces was not the main goal of the current work, in 

this and subsequent experiments we used a generalization test set where similarity to the observed sample 

varied across a single salient dimension (i.e., size). As detailed below, we also made some more minor 

changes to the experimental procedure to reduce the length of the sampling phase and make the task more 

amenable to on-line data collection.

Figure 5. The predicted interaction between sample size and sampling frame. Under category sampling, 
observing additional C+P+ evidence does not lead to very much belief revision: regardless of whether 
few observations (panel a) or many (panel b) are observed, the data are exactly what one would expect 
to observe if the property is shared with non-category members C-. Under property sampling, however, 
a different pattern is seen: if the C-P+ case exists, one should expect to eventually encounter it in a 
property sampling scenario so as more examples of the C+P+ case are observed (panels c and d), the 
strength of evidence against generalization increases.  
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3.1 Method

3.1.1 Participants. 

225 on-line participants were recruited using Amazon Mechanical Turk (AMT). In this and 

subsequent studies, all participants were from the USA and were AMT workers with a minimum approval 

rating of 95% for previous AMT work (MAGE = 34.92 years, SD = 11.65; 112 females). They were paid 

$1.25 US on task completion. Participants were randomly allocated to either the category (n=114) or 

property sampling condition (n=111).

3.1.2 Procedure. 

The task structure was similar to Experiment 1. Participants first saw identical samples of evidence 

about objects that had a novel property under either category or property sampling instructions, and then 

inferred whether the property generalized to objects that varied in similarity to the sample. However, the 

cover story, stimuli and some aspects of the procedure were modified. 

Participants were told that they were scientists in the future studying the newly discovered planet 

Sodor. They were informed via text and pictorial illustrations that rocks on Sodor were circular and varied 

in size. Their task was to use a robot on the planet’s surface to discover which rocks contained the valuable 

substance “plaxium”. Before commencement of the sampling phase, those in the category and property 

sampling conditions were given different explanations of constraints on the sampling process (see Figure 

6). In category sampling, only small rocks were sampled because only these would fit into the robot’s 

small collecting claw. In property sampling, the rocks sampled were the first to show a positive result 

when photographed using a plaxium-sensitive camera. Participants were not permitted to proceed to the 

sampling phase until they achieved a perfect score a 3-item multiple choice-test that assessed 

comprehension of the instructions. If this test was failed the participant was returned to the instruction 

screens. All participants passed this comprehension test within four attempts. 
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Figure 6. Screen shots of instructions used for category sampling (left frame) and property sampling 
(right frame).

On each sampling phase trial participants clicked a button to reveal a rock sample. The sample 

item then appeared with the message “plaxium detected”. After each item appeared, participants had to 

wait for 3 s before collecting the next sample. The pictures of each sample accumulated on the screen. All 

participants viewed the same sample of rocks, which were at the “small” end of the size dimension 

(diameters ranging from 0.4 cm - 0.6 cm) with presentation order of items randomized for each participant.

At three points in sampling (after observing 2, 6 and 12 rocks), the collection of new samples was 

paused and participants were probed for inferences about whether plaxium generalized to seven test rocks 

varying in size (diameters in cm: 0.4, 0.6, 1.0, 1.4, 1.8, 2.2, 2.6). Participants had to rate the likelihood 

that each test item had plaxium (1 = definitely does not, 10 = definitely does). Test items were presented 

in random order. The two smallest test rocks (R1, R2) were the same size as rocks observed in the sample. 

3.2 Results and Discussion

Generalization ratings are shown in Figure 7. These data were analyzed using a 2 (sampling 

frames: category, property) x 3 (sample size: 2, 6, 12) x 7 (test item) Bayesian mixed-model analysis of 

variance, with repeated measures on the last two factors. 
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Figure 7. Mean generalization ratings for each Sodor rock (R1-R7) based on sample sizes of 2, 6 and 12 
items. Bars represent +/-1 standard error. Items to the left of the dotted vertical line were identical to 
those presented during sampling. Items to the right were novel.

Property generalization decreased as the size of the test rocks increased (i.e. as they became less 

similar to the observed sample), BF10 > 10000. Generalization ratings averaged across test items were 
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higher overall for smaller than for larger samples, BF10 > 10000. Overall generalization was also stronger 

following category than property sampling, BF10 > 10000. The latter finding replicates the key effect of 

sampling frames from Experiment 1, showing that this effect extends to our new cover story and stimuli.

The effects of both sampling frames and sample size varied across test items, with BF10 > 10000 

for each two-way interaction. Both of these factors had more of an impact on generalization to test rocks 

that were larger than those observed during sampling (i.e. R4-R7). Crucially, the effect of sampling frames 

was modulated by sample size, BF10 > 10000. Figure 7 shows that after observing only two instances, 

people in both property and category sampling conditions responded conservatively, giving generalization 

ratings in the mid-range of the scale. As sample size increased, there was increasing differentiation in 

generalization following property or category sampling. This effect was especially pronounced for the 

largest test items (i.e., those most dissimilar to the sample instances), BF10 = 7.30. Follow-up tests 

confirmed that for the smallest sample there was indeterminate evidence of an effect of sampling frame 

on generalization, BF10 = 0.47. However, there was robust evidence of a difference between property and 

category sampling frame at sample sizes six, BF10 = 2723.70, and twelve, BF10 > 10000. 

The moderating effect of sample size on the sampling frames manipulation is consistent with our 

model of inference. Those in the property and category sampling conditions responded in similar ways 

to an absence of large rocks from the smallest sample. Presumably this absence was simply attributed to 

chance. As the size of the sample increased however, this absence was viewed by those in the property 

sampling condition as cumulative evidence that the target property was restricted to small Sodor rocks. 

4. Experiment 3: The role of base rates

The first two experiments showed that people are sensitive to sampling frames, with the magnitude 

of the frames effect changing in sensible and predictable ways when we introduced negative evidence 
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(Experiment 1) or changed the sample size (Experiment 2). This experiment tests a third factor that should 

interact with sampling frames during the inference process – the base rates of different types of categories 

within a population. 

In previous studies those in the property frames condition who observed a large sample from a 

given (target) category but no instances of other categories inferred that the novel property did not 

generalize very far beyond the sample. But this inference is only licensed if one assumes that instances 

from non-target categories could have been observed during sampling. If instances of unobserved 

categories were rare in the population, their absence from the sample is less informative for property 

generalization. This is schematically illustrated in Figure 8. 

To test this prediction, we manipulated both sampling frames and category base rates. The general 

design was similar to Experiment 2 except that only a single sample size (9 items) was used and people 

were informed about the relative base rates of the observed and unobserved categories. In the C+ rare/C- 

common condition (hereafter C- common for the sake of brevity), the members of the observed target 

category (small rocks) were said to be rare and members of the unobserved category (large rocks) 

common. The C+ common /C- rare condition (hereafter C- rare) reversed these base rates with observed 

target category members common and non-targets rare. 

The data from the property sampling conditions in the previous studies suggest that, in the absence 

of base rate information, people generally assume that members of non-target categories could have been 

observed during sampling. Hence, we expected that the effects of sample frames on inferences in the C- 

common condition would be similar to those observed previously. In the C- rare condition however, the 

absence of larger rocks in the property frame sample can be attributed to their low base rate rather than 

their lack of plaxium. Hence, we should see smaller differences in property generalization between 

category and property frame conditions in the C- rare condition. 
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Figure 8. The predicted effect of base rates in category sampling and property sampling.

These predictions assume that people are sensitive to sample base rates and will combine them 

with other sample information such as frame constraints, when drawing inferences. This may seem at odds 

with findings that people frequently ignore base rates when making probabilistic judgments (see Meder 

& Gigerenzer, 2014 for a review), especially when base rates are described in words and/or statistics rather 

than being experienced in trial-by-trial sampling (Hawkins, Hayes, Donkin, Newell, Pasqualino, & 

Newell, 2015; Hogarth & Soyer, 2011). Indeed, some have cited base rate neglect as evidence that 

reasoners are “naïve statisticians” (e.g., Juslin, Winman, & Hansson, 2007) or are generally “myopic” 

about the implications of base rates and other parameters that affect sample composition and generation 

(e.g., Fiedler, 2012; Kahneman, 2011). 

In some respects, this pessimistic view seems at odds with our sampling frame results. The 

previous studies show that reasoners faced with identical samples draw very different inferences 
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depending on how the sample was selected. In this respect they showed no myopia in their understanding 

of how sampling processes affect inference. It remains to be seen whether participants are capable of 

factoring both frame constraints and base rates into their inferences. 

4.1 Method

4.1.1 Participants. 

789 on-line participants were recruited using Amazon Mechanical Turk and were paid $1.25 US 

on task completion (MAGE = 35.72 years, SD = 11.13; 328 females). The large sample was motivated by 

pilot work suggesting that if a moderating effect of base rates on sampling frames was found, it would 

likely be small (see Appendix A). Participants were randomly allocated to one of four conditions: category 

sampling, C- common (n = 211), category sampling, C- rare (n = 194), property sampling, C- common 

(n = 203), property sampling, C- rare (n = 181).

4.1.2 Procedure. 

The procedure was similar to Experiment 2, except for the following. Prior to the sampling phase 

participants were shown two screens that provided information about the relative base rates of large and 

small rocks on Sodor. In the C- common condition, participants were shown a picture of six “large” 

circles (diameter > 1.0 cm) and one “small” circle (diameter = 0.4 cm), arranged in a random fashion, with 

text stating that “Most Sodor rocks are large. Small Sodor rocks do exist but are very rare”. In the C- rare 

condition, the base rate pictures and text were reversed with one large small and six small circles shown. 

To ensure correct encoding of base rates, the multiple choice test that preceded sampling included a base 

rate question that had to be answered correctly before the participant was allowed to proceed.

The sampling phase followed the presentation of base rate information. The category and property 

frames instructions were the same as in Experiment 2. The sampling phase trials proceeded in a similar 
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manner to the previous study except that all participants saw a sample of nine small Sodor rocks, and only 

made one set of generalization ratings after all samples were viewed. 

4.2 Results and Discussion

Generalization ratings are shown in Figure 9. These data were analyzed using a 2 (sampling 

frames: category, property) x 2 (base rate: C- common, C- rare) x 7 (test item) Bayesian mixed-model 

analysis of variance, with repeated measures on the last factor. We again found that generalization 

decreased as the size of test items increased, BF10 > 10000. We also again found very strong evidence for 

a main effect of sampling frames, with less generalization to test items following property sampling than 

category sampling, BF10 > 10000. The sample frames effect did not vary across the range of test items, 

BF10 = 0.0009. Overall, generalization ratings were higher in the C- rare base rate condition than in the 

C- common condition, BF10 = 34.91. As indicated by an interaction between the base rate and test items 

factors, BF10 = 127.28, the higher generalization ratings in the C- rare condition were concentrated 

among the novel, larger test items (i.e. R3-R7). However, no clear evidence was found for the predicted 

interaction between sample frames and base rate, BF10 = 0.53.

This experiment again replicated the sampling frames effect with property sampling leading to 

more restricted generalization than category sampling. Participants were also more likely to generalize the 

novel property to large Sodor rocks when these types of rocks were rare (C- rare) than when they were 

common (C- common). However, contrary to predictions we did not find evidence that the sampling 

frames effect was modulated by the relative base rates of observed and unobserved evidence. Moreover, 

three other variations of this experiment using very similar designs (B1, B2 and B3 in Appendix A) found 

essentially the same thing.
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An overall effect of base rates on generalization to novel test items indicates that participants did 

encode the relevant base rates and used them in their inferences about property generation. This suggests 

that people that people may not have been entirely “myopic” about the importance of sample base rates 

for property inference (Fiedler, 2012), but nevertheless, it appears that those in the property sampling C- 

rare condition did not see the base rates as an alternative explanation for why only small rocks were 

observed in the sample.

Figure 9. Mean generalization ratings for each Sodor rock (R1-R7). Bars represent +/-1 standard error. 
Items to the left of the dotted vertical line were identical to those presented during sampling. Items to the 
right were novel.

5. Experiment 4: Base rate effects revisited

The absence of an interaction between base rate and sampling frame in Experiment 3 is at odds 

with the predictions of the censored reasoning model, though consistent with other studies demonstrating 

base rate neglect in statistical reasoning (e.g., Chun & Kruglanski, 2006; Hayes, Hawkins & Newell, 2016; 

Koehler, 1996). One factor that can affect the integration of base rates with other relevant problem 
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components is their relative salience. The extent to which people use base rate as opposed to individuating 

details in lawyer-engineer problems for example, is related to the amount of detail provided about each 

type of information (cf. Koehler, 1996; Welsh & Navarro, 2012). In the typical problem where base rate 

neglect is observed, base rates are mentioned only briefly while a rich description of individual features 

is provided. However, when the description of base rates is more extensive, perhaps unsurprisingly, they 

are more likely to be combined with other statistical information in subsequent judgments (e.g., Chun & 

Kruglanski, 2006). 

One possibility is that the design used in Experiment 3 (and studies B1-B3 in Appendix A) used a 

detailed instruction set and trial-by trial learning in order to instantiate the sampling frames, but did not 

provide a similarly “salient” method for describing category base rates. To address this – and to see if it 

is possible to obtain the predicted interaction in at least some experimental designs – Experiment 4 adopts 

a more “heavy handed” approach, using a stronger base rate manipulation. 

5.2.1 Method

5.1.1 Participants. 

Participants were recruited using AMT, with the same payment and inclusion conditions as 

previous studies (MAGE = 35.68 years, SD = 10.81; 190 females). Random allocation resulted in the 

following cells: category sampling, C- common (n = 110), category sampling, C- rare (n = 107), 

property sampling, C- common (n = 111), property sampling, C- rare (n = 95).

5.1.2 Procedure. 

This was identical to the previous study except for changes to the way base rate information was 

presented. First, the base rate difference between small/large Sodor rocks was more extreme (ratio of 

approximately 25:1 as compared to 6:1 in the earlier experiment). Second, an additional instruction screen 
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was used to illustrate the base rate discrepancy. This presented the relative numbers of small/large Sodor 

rocks in two vertical columns presented side-by-side (see Figure 10). 

Figure 10. Screens used to illustrate base rates in the C+ rare/ C- common condition (left) and C+ 
common/ C- rare condition (right)

5.2 Results and Discussion

Property generalization ratings are shown in Figure 11. A Bayesian mixed-model analysis of 

variance replicated the key main effects of test items, sampling frames, and base rates from the previous 

study, all, BF10’s > 10000. There was also evidence of a two way-interaction between frames and test 

items, BF10 = 343.39, and between base rates and test items, BF10 > 10000. However, in this case we also 

found strong evidence for a two-way interaction between sampling frames and base rates, BF10 = 24.02, 

and a three-way interaction between sampling frame, base rate and test items, BF10 = 165.25. Figure 11 

shows that, in line with our model predictions, i) generalization to items that were part of the observed 

sample (R1-R2) was lower in the property sampling, C- rare condition than in other conditions, and that 

ii) the differences between category and property sampling in generalization to the largest new items (R5-

R7) were attenuated in the C- rare as compared to the C- common condition. The latter effect was further 

confirmed by Bayesian t-tests comparing category and property sampling for each test item in each base 
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rate condition. For the C- rare condition, there was strong evidence that category sampling led to higher 

generalization ratings than property sampling for R1, R2, R3 and R4 (all BF10’s >250), but no clear 

evidence of a frames effect for the largest (i.e. most dissimilar) test items, R5, R6 and R7 (BF10’s = 0.92-

0.28). By comparison, in the C- common condition, category sampling led to higher generalization ratings 

than property sampling for all test items (BF10’s = 8379.08 – 11.27).

As predicted, base rate information had a profound effect on the way that people drew inferences 

from property sampling. When small rocks were common and large rocks were rare this provided an 

alternative explanation for the composition of the property sample (aside from sharing plaxium). The base 

rate information preserves the hypothesis that large rocks could have plaxium but were unlikely to be 

observed in the property sample. As well as providing further support for our Bayesian account, these 

results show that people are capable of integrating information about two sampling parameters (frames 

and base rates) into their property inferences.

Figure 11. Mean generalization ratings for each Sodor rock (R1-R7). Bars represent +/-1 standard 
error. Items to the left of the dotted vertical line were identical to those presented during sampling. 
Items to the right were novel.
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6. A computational model

Throughout the paper we have motivated our experiments intuitively, relying on schematic visual 

depictions (Figures 2, 3, 5 and 8) to link the theoretical framework (Figure 1) to the experimental work. 

In this section, we introduce a specific instantiation of the framework. In most of our previous work 

investigating sampling effects on inductive reasoning (e.g., Hayes et al., under review; Hendrickson et al., 

under review; Navarro et al., 2012; Ransom et al., 2016) we adopted models that extend the Bayesian 

generalization model developed by Tenenbaum and Griffiths (2001) that relies on the “consequential 

regions” idea introduced by Shepard (1987; see also Soto, Gershman & Niv 2014). This approach can be 

applied to these data, and produces the right qualitative effects (Hayes et al. 2017), but requires 

considerable modification from the original form of the Bayesian generalization model. In this paper, we 

adopt an approach previously used when modelling inductive reasoning in associative learning tasks (Lee, 

Lovibond, Hayes & Navarro, under review), in which the learner’s goal is to infer a continuous-valued 

function defined over the stimulus space rather than make “hard” assignments of stimuli to consequential 

sets. That is, the learner aims to learn the probability that a particular type of entity (e.g., small bird, small 

Sodor rock) possesses a property (e.g., plaxium), and as such the problem is most naturally expressed as 

a form of function learning.

Inspired by work in the Bayesian function learning literature (Griffiths, Lucas, Williams & Kalish 

2009; Lucas, Griffiths, Williams & Kalish 2015), we define the computational problem for property 

induction tasks as follows. We assume the reasoner’s goal is to learn a smooth function  that specifies 𝑓

the logit of the probability  that any given entity  has plaxium blood (or similar). 𝜙(𝑥) = 𝑓(𝑥)/(1 ‒ 𝑓(𝑥))  𝑥

We place a Gaussian process prior  over this function (Rasmussen & Williams, 2006), which ensures 𝑃(𝑓)

that similar entities have similar probabilities, but is otherwise unconstrained. The critical difference 

between sampling conditions is the likelihood function. Under category sampling, the selection 
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mechanism  constrains the observation to be a small bird, and the likelihood  describes the 𝑆 𝑃(𝑑│𝑓, 𝑆)

probability that a small bird has plaxium blood. Under property sampling, this is reversed: the selection 

mechanism restricts the observation to be an animal with plaxium blood, and the likelihood  𝑃(𝑑│𝑓, 𝑆)

describes the conditional probability that an animal with plaxium blood is a small bird. See Appendix B 

for formal details on the model and the model fitting. All model code can be found at https://osf.io/j4dxm/.

We see this as a descriptive rather than a normative model: although we assume that people use 

Bayesian belief-updating mechanisms (or heuristics that approximate such updating), we do not make any 

claim about the optimality of people’s priors, likelihoods or hypothesis spaces for a given censoring 

problem (see Tauber, Navarro, Perfors, & Steyvers 2017, for detailed discussion of differences between 

descriptive and normative Bayesian theories). Theoretically, our goal is not to make any claim of 

optimality, but rather to describe a coherent set of probabilistic reasoning rules that give rise to human-

like patterns of inductive generalization in these tasks.

How closely does the Gaussian process (GP) model mirror human performance in the 

experiments? Overall, as shown in Figure 12, the model performs very similarly to human participants. 

Not only does it reproduce the core effect of sampling frames, it also reproduces almost all of the 

qualitative effects found in the experiments: adding explicit negative evidence attenuates the effect (left 

panels), increasing sample size exaggerates it (middle panels) and changing the base rate affects property 

sampling but not category sampling (right panels). In some instances, it performs surprisingly well at 

capturing low-level details of the data. For example, when sample size increases this affects generalization 

in both property and category sampling, but the qualitative pattern of this change is different. For category 

sampling, the bulk of the effect occurs for the target category and highly similar categories (i.e., the curves 

shift up on the left-hand side), with no effect on the distant categories. Under property sampling, there is 

https://osf.io/j4dxm/
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a more modest sized effect, but it occurs as a crossover that shifts ratings up for very similar items and 

down for very dissimilar items. The Gaussian process model reproduces this pattern.

That said, there are also a number of places where the model and human inferences differ. The 

most noteworthy are (1) the GP model is less willing to endorse the target category under property 

sampling (most notably in Experiment 1), because it allows for the possibility that there are plaxium-

negative category members that were censored out during sampling. People appear less likely to consider 

this possibility. Additionally, (2) the GP model predicts a genuine null effect of base rate under category 

sampling, whereas the Experiment 4 data merely show an attenuated one. Nevertheless, minor prediction 

failures notwithstanding, the model performs admirably well with very little model fitting (see Appendix 

B), correlating above r = 0.9 with the human data in all three experiments, as shown in Figure 13.  
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Figure 12. Comparison between the empirical property generalization data (top row) and the 
predictions of the Gaussian process model (bottom row). Each panel plots the results for one of the 
three successful experiments (1, 2 and 4) under one of the two sampling conditions. Test stimuli for 
Experiment 1 correspond to the different species in decreasing order of similarity. For Experiments 2 
and 4 they map to different rock sizes (with size increasing from left to right). Test stimuli to the left of 
the vertical dotted lines are those used in training, and those to the right are the generalization items.  



33
Sampling frames and induction

●
●

●

●

●

●

●

●

●

●

●

● r = 0.945

●

●
●

●

●
●

● ●
●

●●
●

●
●
●

●
●

●
●
●
●

r = 0.908

●
●
●●

●

●●

●
●

●

●

●

●

●

r = 0.916

E1: Negative Evidence E2: Sample Size E4: Base Rate

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Model

H
um

an

sampling
● Category

Property

condition
●

●

●

●

●

●

●

C− Rare

C− Common

N = 2

N = 6

N = 12

Positive Only

Positive & Negative

Figure 13. Scatterplots showing the comparison between the model predictions and human data for 
probability of property generalization. 

7. General Discussion

These four studies examined the predictions of a new Bayesian model of property inference with 

censored evidence. The most central prediction from the model concerns how frames that constrain the 

process of sample selection affect property generalization. All four studies found evidence of a sampling 

frames effect, such that participants viewing identical samples that shared a novel property were more or 

less likely to generalize that property to other categories depending on the frame. As predicted, samples 

selected on the basis of a shared property generally led to more restricted property generalization than 

those selected on the basis of category membership. This result was robust across a range of cover stories 

and categorical stimuli. 

We see this sample frames effect as reflecting the reasoner’s sensitivity to the implications of both 

observed positive evidence and unobserved evidence, with frames providing alternative explanations for 

why certain types of data were censored. This interpretation was supported by Experiment 1 which found 
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that when explicit negative evidence was added to the sample, property generalization narrowed under 

category sampling but not property sampling. This is because the negative evidence was already strongly 

implied by the absence of non-target categories from the property sample. Our account was further 

supported by Experiments 2 and 4, which manipulated factors that affected the likelihood of observing 

evidence about non-target categories (sample size, category base rates). When this likelihood was reduced 

(due to a small sample size or low category base rate), the sample frames effect was attenuated or 

eliminated. 

Our intuitions about the mechanisms that drive the sampling frame effect were formalized in a 

Bayesian account in which different censoring mechanisms (i.e. sampling frames) are implemented using 

likelihoods subject to different survivor functions. This model captured all of the key qualitative 

phenomena in our experiments. In many but not all cases, we also achieved a reasonable quantitative fit 

between the model and the data, even though we did not optimize most of the key parameters. Notably, 

our model produced a good qualitative account of inferential data involving complex multidimensional 

stimuli (Exp. 1) as well as unidimensional stimuli (Exp.s 2 and 4).

Most previous models of property inference (Osherson et al., 1990; Sloman, 1993), including some 

Bayesian accounts (Heit, 1998), have focused on the role of sample composition, with generalization 

governed by factors such as the typicality, size or diversity of a sample. Such models do not account for 

any kind of sampling effects. The current work therefore adds a new dimension to our understanding of 

property inference by explaining how identical samples can drive different inferences depending on 

perceived constraints on sample selection. In the current work these constraints were imposed by 

deliberate sampling strategies (e.g., reducing sampling time/complexity by only inspecting instances from 

a single category) or by environmental limitations (as in the size-based sampling of Sodor rocks). 
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This work complements recent studies that highlight the impact of social and pragmatic constraints 

on the sampling process in property inference (Hayes et al., under review; Ransom et al., 2016; Shafto et 

al., 2014; Voorspoels et al. 2015). In everyday inference the samples of evidence that we observe are often 

likely to be subject to both types of constraints; frame-like limitations that systematically exclude certain 

types of data as well as data selected with a particular social goal (e.g., to teach or to mislead). A complete 

understanding of property inference requires the development of detailed models of both types of data 

censoring processes. While such models have been developed for inferences based on socially motivated 

sampling (Ransom et al., 2016; Voorspoels et al. 2015), to our knowledge our model is the first to address 

how property inferences change as a consequence of frame constraints on evidence samples.

7.1 Comparison with other approaches

In some respects, our approach has some similarities to previous approaches that conceive of 

property inference as a process of constructing and assessing rival hypotheses about property extension 

(e.g., McDonald, Samuels, & Ripsoli, 1996; Medin, Coley, Storms, & Hayes, 2003). Relevance theory 

(Medin et al., 2003), assumes that reasoners examine evidence samples (e.g., premise categories in verbal 

inductive arguments that share novel property) and construct hypotheses about what that property might 

be. The strongest hypothesis about property extension is based on the most salient features shared by 

sample instances. One crucial difference between Relevance theory and the current approach, is that in 

the former, hypotheses about property extension are generated by a comparison of instances within a given 

evidence sample, whereas our approach emphasizes the crucial role of external constraints (i.e., sampling 

frames) on the sampling process. Another crucial difference is that Relevance theory is silent about 

whether people consider implied (but unobserved) negative evidence when formulating inferences, 

whereas such evidence plays a key role in explaining the patterns of inference observed in our studies. 
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Throughout the paper, one key theme – though by no means the only one – is that because the 

sampling frame  constrains which potential observations  are censored and which are admissible, it 𝑆(𝑑) 𝑑

plays a critical role in determining when “absence of evidence” should be construed as “evidence of 

absence”. Our theoretical perspective on this question – sometimes referred to as the problem of implicit 

negative evidence – is explicitly Bayesian in nature, and as such it is worth considering the connection 

between our approach and other Bayesian perspectives on the problem. The Bayesian generalization 

framework (Tenenbaum & Griffiths, 2001) handles this problem by invoking the concept of strong 

sampling, in which observations are chosen explicitly from a target category. Previous work in the 

property induction literature (Hayes et al., under review; Ransom et al., 2016) suggests that people are 

sensitive to these manipulations. Although in this paper we have departed from the formalism that 

underpins these models (i.e., unlike Shepard, 1987, and Tenenbaum & Griffiths, 2001, we treat property 

inference as a function learning problem rather than inferring a consequential set of stimuli), the censoring 

mechanism is a more general version of the concept of strong sampling, one that applies more generally 

across a variety of contexts (e.g., base rate manipulations, property versus category sampling).

Another approach to the problem arises when accounting for how people reason about verbally 

specified “arguments from ignorance” (Hahn, Oaksford, & Bayindir, 2005; Oaksford & Hahn, 2004; Hahn 

& Oaksford, 2007). An example of such an argument assumes that “If Drug A has toxic side-effects these 

will show up in legitimate tests”. Participants are then given varying amounts of negative evidence (e.g., 

1 vs. 50 tests found no side-effects) and asked to infer whether this supports the conclusion that “Drug X 

does not have toxic side-effects”. Although such arguments are deductively invalid (equivalent to a denial 

of the antecedent), they can have inductive strength. For instance, Hahn and Oaksford found that people 

were more convinced by large amounts of negative evidence than small amounts. Judgments were also 

influenced by the strength of prior beliefs in the conclusion and beliefs about test sensitivity (i.e. the 
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conditional probability that a side-effect would be observed if present). Hahn and Oaksford (2007) showed 

that these data, together with ratings of other “arguments from ignorance” that did not involve negative 

evidence, could be accounted for within a Bayesian framework that accommodates the idea of epistemic 

closure. In this context, epistemic closure captures an idea that is similar in spirit to the way we conceive 

of sampling frames – it captures the idea of completeness of the evidentiary source. If a system is 

epistemically closed (e.g., Google’s index of web pages) then it is expected to contain all relevant 

information and the absence of evidence within that system is informative. A system that is not closed 

(e.g., my browser bookmarks) is missing key information and absence of evidence cannot be construed as 

evidence of absence. 

From the perspective advanced here, these two situations constitute different sampling frames that 

impose different censoring rules. Searching webpages through Google does not filter out many cases, 

whereas searching through one’s own bookmarks imposes very strong constraints. Broadly speaking, our 

approach is largely consistent with Hahn and Oaksford (2007), but is coupled with a more precise model 

of the inductive reasoning problem that applies in property induction tasks (i.e., Gaussian process prior 

over functions), and is naturally extensible to scenarios (e.g., base rate manipulations) that are not as easy 

to describe using an “epistemic closure” framing. 

Another Bayesian perspective on the implicit negative evidence problem was proposed by Hsu et 

al. (2016), who present a Bayesian account of a “minesweeper” style game, in which participants had to 

judge whether a given area of land had been cleared of mines after inspecting a sample of locations within 

that area. Although the formalism they present is specific to the minesweeper task, the core ideas have a 

lot in common with the base rate manipulations that we used in Experiments 3 and 4, particularly 

Experiment 4 insofar as they also made the base rate information visually salient in the task. Like us, they 

find that people’s inferences about implicit negative evidence are sensitive to this base rate information, 
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but do not consider how this interacts with sampling frame. In that sense our work can be viewed as an 

extension and generalization of the approach. 

The issue of people’s sensitivity to implied negative evidence has also been examined previously 

in the context of inferring grammar learning, where a key question is how we learn to discriminate between 

grammatical and ungrammatical sequences given that the latter are rarely observed (Bowerman, 1988). 

Part of the answer is that language learners are sensitive to cases where an ungrammatical sequence could 

have been produced but was not. In these cases, the absence of the sequence implies that it is not part of 

the category of acceptable grammars (Hsu & Griffiths, 2009; Perfors, Tenenbaum, & Wonnacott, 2010). 

Our work extends these ideas by suggesting that people are sensitive to implied negative evidence when 

inferring how far a property generalizes from an observed sample. 

A final comment on the relationship between our approaches and other Bayesian perspectives is 

worth adding, namely the extent to which we view our account as normative. To varying degrees, Hahn 

and Oaksford (2007), Tenenbaum and Griffiths (2001) and Hsu et al. (2016) suggest that normative claims 

are licensed from their models, insofar as they describe the model as “rational” accounts of human 

reasoning in different tasks. Given recent discussions on the normative status of Bayesian accounts (e.g., 

Bowers & Davis 2012; Griffiths, Chater, Norris & Pouget, 2012; Tauber et al. 2017) we feel it is worth 

stating our own position regarding our model explicitly. Our account does satisfy a number of desirable 

properties of a rational reasoner (e.g., coherence), as do all Bayesian models, and can be construed as a 

sensible solution to the inductive inference problems we presented in our experiments. However, we stop 

short of making prescriptive claims about the rationality of the model and of human performance in the 

task. Our experiments were not designed to test whether the choices of priors and likelihoods are a good 

match to the kinds of problems that people face in the real world. As such, our goal was to develop a 

descriptive psychological theory about the kinds of hypotheses about property extension that people 
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generate based on positive evidence and implied negative evidence, and how this inference process is 

influenced by one’s understanding of mechanisms that censor some types of observations (cf. Tauber et 

al., 2017). How this model might translate to more complicated real world environments – and what it 

might say about how well people reason in them – is an open question, one to which we now turn.

7.2 Reasoning with censored evidence in more complex environments

The current work shows that the inferences we draw are sensitive to a number of factors - frames, 

sample size and base rates - that impact the likelihood of whether particular types of evidence will be 

observed during sampling. This work and most particularly, the results concerning base rates, seems to 

challenge strong assertions that humans rarely consider sampling constraints when drawing probabilistic 

inferences (e.g., Fiedler, 2012; Juslin et al., 2007; Kahneman, 2011). We see our results as an existence 

proof that people can combine information about base rates and sample frames to draw conclusions that 

are consistent with Bayesian principles. In this respect our reasoners did not seem like “naïve” statisticians 

(cf. Juslin et al., 2007). 

Nevertheless, some caveats on our conclusions are in order. First, we only found evidence of base 

rate modulation of sampling frames effects when the disparity in base rates between different categories 

was extreme and when this disparity was presented in a visually salient format. Second, some of the 

previously reported cases of base rate neglect or misuse have involved what are arguably more complex 

sampling scenarios than those presented in our experiments. In particular, in many cases where people 

have failed to factor base rates into their inferences (e.g., Fiedler, Brinkmann, Betsch, & Wild, 2000), the 

observed sample data have been probabilistic (e.g., only a certain percentage of the observed sample have 

a relevant property such as having a positive mammogram result). This contrasts with the current studies 

where all members of the sampled category had the property of interest. Undoubtedly, such deterministic 
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evidence simplifies the inference process. An important goal for future work therefore is to extend the 

current work to cases where there is a probabilistic relationship between category membership and 

presence of the target property. Pilot work on this issue (Hayes et al., 2017) suggests that sampling frames 

effects analogous to those reported here are still observed when probabilistic evidence is used, albeit with 

smaller effect sizes. 

The sampling frames used in the current experiments involved relatively straightforward 

mechanisms likely to be understood by most participants. Outside the laboratory however, people may 

not always understand the implications of a frame or data censoring mechanism or even be aware that 

censoring has taken place (e.g., Feiler, Tong, & Larrick, 2012; Hogarth et al., 2015). Hogarth et al. (2015) 

for example, cite the case of a personnel manager trying to predict the attributes that make for a successful 

applicant for a job by examining samples of attributes of previously successful candidates. In this case the 

manager is unaware that they are basing their inferences on a highly censored data set (unsuccessful 

applicants are omitted) and that the censored data would be useful for the predictive task at hand. An 

important task for future work is to examine the extent to which our model can be generalized to inference 

and prediction in these more complex cases of censored evidence.

8. Conclusion

The sampling frames effect that was focus of the current experiments is a good example of the 

more general problem of drawing inferences from censored data. It is rare indeed for us to have all of the 

available evidence at our finger tips when called upon to make everyday inferences. Instead, most of our 

inferences are based on data that has been subject to some form of censoring process, driven by physical 

and resource constraints (e.g., limited time or capacity for data accumulation) or social intentions (where 

data is selected by others to lead us towards a particular conclusion). The same is often true in more formal 
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decision-making scenarios such as deciding on criminal guilt from the partial and carefully selected 

evidence presented at trial. The current work extends our understanding of property inference by providing 

a general theoretical framework for inferences with censored evidence that allows us to predict when and 

how such inferences will change in different censoring environments. 
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Footnotes

1 Some readers may be curious about how people respond in our induction task when given no information 

about the sampling frame or when told that sample instances were selected randomly. We ran a pilot study 

using the experimental procedure described in Experiment 1 but with a cover story describing random 

selection of the sample instances. The pattern of generalization at test was similar to that in the category 

sampling – positive evidence only condition in Figure 2. At this point however, we are reluctant to draw 

strong conclusions from this. In debriefing it was clear that many participants no longer not believed the 

random cover story after they observed a sample composed only of small birds. 

2 The decision to adopt a within-subject design was motivated by a concern that participants might treat 

the sample size in a “toy” experiment in a somewhat metaphorical sense: being shown a cartoon picture 

of 3 rocks may not necessarily suggest to people that they should treat it as equivalent to N=3, but visually 

observing an increase in the sample size would likely prompt people to notice that the increase from 3 to 

6 does correspond to an increase in evidence. Indeed, in one version of the task we ran that used a between-

subjects design to manipulate sample size (Study S1 in Appendix A), we found no effect of sample size 

at all, though that study did replicate the sampling frames effect.
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Appendix A – Complete list of unreported experiments

In the interests of transparent science, and to fully disclose the contents of the “file drawer”, we briefly 

outline the five additional experiments we have run on this topic, what those experiments found, and the 

reason for not including them in the main paper. All data sets, including these, are documented and 

included in the associated OSF repository, https://osf.io/j4dxm/ .Note that in all five cases the core 

“sampling frames” effect replicated, but the effects of moderating variables were not always found.

Ambiguity experiment

Experiment A1: Possible effect of ambiguous evidence. N=80 undergraduate students participated in a 

version of the task where 80% of the observations were P+ and 20% were ambiguous (P unknown). The 

frames effect replicated. Superficially, ambiguity appeared to diminish the effect, but the statistical 

evidence was unclear. This experiment was omitted because it relates to a somewhat different question, 

and moreover has previously been documented as Experiment 2 in Hayes et al. (2017).

Base rate experiments

Experiment B1: Small effect of base rate, version 1: N=286 undergraduate students participated in a 

version of the base rate experiment using the birds stimuli. The frames effect replicated. The predicted 

moderating effect of base rates appeared, but not in a robust way (i.e., the Bayes factor was modest, 

BF10 = 2.98, and the strength of evidence depended on the choice of analysis – it is somewhat larger if 

the analysis is based on the specific contrast we predicted rather than a general purpose ANOVA 

interaction, but still not entirely compelling). 

https://osf.io/j4dxm/
https://osf.io/j4dxm/
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Experiment B2: Minor variation of Experiment 3 in the main text (actually run before Experiment 3): 

N= 398 MTurk workers. The only difference in design was that there was an additional test point 

smaller than any observed rocks. The frames effect replicated. Consistent with Experiment 2 but not B1 

there was no moderating effect of base rate.

Experiment B3: Attempted reconciliation of B1, B2 and Experiment 3 in the main. Participants were 

N=312 undergraduate students, who completed both the “birds” task and “robots” task in Experiment 2. 

The frames effect replicated in both tasks. Consistent with Experiments 2 and B2 but not B1, the 

moderating effect of frames was not present.

Collectively, Experiments B1-B3 were omitted because they are in minor variations of Experiment 2 in 

the main text, and the results are essentially replications. As noted in the main text, the base rate effect 

from Experiment 3 appears to be dependent on the fact that the base rate is made “sufficiently salient” 

using the unambiguous display shown in Figure 10.

Sample size experiment

Experiment S1: Null effect of sample size, as a between-subjects manipulation: N = 465 MTurk 

workers participated in a version of the “birds” task where a between-subjects manipulation of sample 

size was used (samples composed of 3, 8 or 20 items). The frames effect replicated. The moderating 

effect of sample size was not present. Unlike Experiment 2, a robust frame effect was observed for all 

sample sizes. This experiment was omitted for brevity, but as noted in the main text there are limits to 

the generalizability of Experiment 2. 
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Comment on possible file drawer effects

The effects reported in the paper appear to have different levels of robustness. The core “sampling 

frames” effect was tested in all 9 experiments and was detected on all 9 occasions. The interactions 

between frame and other variables may be less robust than the core effect. To summarize:

- Interaction with negative evidence: tested once (Exp. 1), detected once 

- Interaction with ambiguity: tested once (A1), detected once but with small effect

- Interaction with sample size: tested once (Exp. 2) within-subjects and detected as a large effect; 

once between-subjects and not detected

- Interaction with base rate: tested five times (Exp. 3-4, B1-B3), one strong effect with a very 

salient manipulation (Exp. 4), no consistent pattern of evidence with less salient manipulations 

(other experiments)
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[This note is Appendix B to Hayes, Banner, Forrester & Navarro (under review). Sampling
frames in inductive reasoning.]

Appendix B - Gaussian process model for property induction tasks

Following previous work in human function learning (e.g., Lucas et al 2016) we be-
gin by considering the problem of learning an arbitrary function f , defined over some
stimulus space X . In the general case the stimulus space can be richly structured and
multidimensional, but for the current paper it is sufficient to consider stimuli that vary
only on a single continuous dimension. The Gaussian process (GP) provides a method
for specifying priors over smooth functions (see Rasmussen & Williams 2006; Schulz,
Speekenbrink & Krause 2018). The goal is to infer a prediction function f : R ! R

that maps every possible stimulus x onto some subjective notion of inductive strength
y = f (x). The function f is defined over the entire stimulus space, but is measured a fi-
nite subset of points x = (x1, . . . , xn). The key idea n Gaussian processes is that for every
possible finite subset of input variables x, the joint distribution over the corresponding
output variables y = (y1, . . . , yn) is a multivariate Gaussian distribution with mean vector
µ and covariance matrix S. This prior is denoted

f (x) ⇠ GP(µ, S) (1)

In the function learning context, the inductive problem facing the human learner is similar
in nature to regression problems in statistics, and this prior is sensible (e.g., Lucas et al
2016). For property induction tasks, however, participants are implicitly solving a binary
classification problem, deciding on the probability that a stimulus possesses a particular
property. To do so, the function f is mapped onto the unit interval by passing it through
a logistic function,

f(x) =
1

1 + exp(� f (x))
(2)

producing a function f : R ! [0, 1] whose values can be interpreted as probabilities. After
observing a set of stimuli and their properties (e.g., small birds with plaxium blood), the
learner updates the prior a posterior distribution over possible inductive generalization
functions f. The curves plotted in Figure 12 show the posterior mean values for f.

Setting parameters for the model

Under the GP prior, the prior mean of the function f at points x is given by the mean
vector µ, which we fix at 0 for all values of x, which in turn implies that the prior mean
for the generalization function f is 0.5 for all possible stimuli. This is arguably plausible
for property induction experiments involving “blank” predicates, but in other situations
where people bring real world knowledge to the task a more flexible approach may be
required.
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The covariance matrix S = [sij] governs the smoothness of the function f , and is
defined in terms of a kernel function sij = K(xi, xk) that specifies how correlated the values
of f are as a function of the stimulus properties xi and xj. There are a variety of kernel
functions used in the statistical learning literature, but for the purposes of the current
paper we focus on radial basis functions, in which the similarity between items xi and xj
depends only on the distance between them

dij = |xi � xj|

in an appropriately formulated psychological space. Insofar as the inductive generaliza-
tion problems considered here are a form of similarity-based generalization (defined in
terms of complex high dimensional stimuli for Experiment 1, and simpler unidimensional
items in Experiments 2-4) the radial basis function allows us to describe the problem
solely in terms of the psychological distance between items (see Jäkel, Schölkopf & Wich-
mann, 2009). Thus, while the unidimensional stimulus representation shown in Figure
12 seems reasonable as a way of representing the Sodor sphere in Experiments 2-4, the
formalism used here is sufficiently general that it also applies to the animals problem
(Experiment 1) so long as the distances between items in the mental representation are
reasonably closely approximated by the set of distances between points on a line. No
implication of psychological unidimensionality is required. In all simulations, we make
the simplifying assumption that the test items x are spread evenly across the stimulus
space, with values x = 1, 2, . . . , n. The specific kernel function we use is

K(xi, xj) = t2 exp(�rdij
2)

In this expression, t describes a baseline correlation between pairs of items, and r governs
the rate with which this correlation decays as function of distance. The elements of the
covariance matrix S are then given by

sij =

⇢
K(xi, xi) if i 6= j

K(xi, xi) + s2 if i = j

where s describes the inherent noise in the data. Parameter setting was done by hand
and fixed at s = .5, t = 1.5 and r = .1 for all modelling exercises. We return to this issue
at the end of this Appendix.

Category sampling and property sampling

In almost all cases, the only data available to the learner are property-positive exem-
plars of a target category. Under property sampling, the censoring function S(x) only
allows property-positive items to be included in the sampling frame, whereas under cate-
gory sampling S(x) only admits category members. We implement these in the following
way. Under the hypothesis h that f(x) describes the true probability that a member of
category x possesses the property, the property of observing a property-positive example
of category x is simply:

P(d|h) = f(x)
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and the probability of several such examples is the product of their individual probabili-
ties. Under property sampling, the situation is a little different. Let q(x) denote the prior
probability that a randomly sampled exemplar belongs to category x (i.e., the base rate).
Then the probability of observing a member of the category that is not censored out (i.e.,
possesses the property) is the product q(x)f(x) so the likelihood function for a single
observation becomes

P(d|h) µ q(x)f(x)

where, except as specified below, for a finite set of categories x we place a symmetric
Dirichlet prior over the category base rates,

q(x) ⇠ Dirichlet(a) (3)

In our simulations we set a = .35.

Describing the role of moderator variables

The experiments explore three moderating variables: sample size, base rates, and
explicit negative evidence. To capture the sample size manipulation we vary n so that
it matches the true number of observations presented to participants. For the base rate
manipulations, we alter the Dirichlet prior over base rates so that the value of a for the
target category (e.g., small spheres) is either very high or very low: we used a = .01 for
the rare condition and a = 20 for the common condition.

In the explicit negative evidence condition, participants were told that the negative
evidence items were selected using an “inverted” version of the sampling frame: for
property sampling, they were told that animals were selected because they were plaxium
negative, whereas in category sampling the items were selected because they were not
small birds. Accordingly, for property sampling the likelihood of the negative evidence
items is

P(d|h) µ (1 � q(x))f(x)

Under category sampling there is some ambiguity as to whether sampling “other ani-
mals” implies that the set of animals was fixed by the sampling frame or whether they
were sampled at random conditional on not being small birds. For simplicity we assume
the former, but both yield the same behaviour. On the assumption that all the categories
are fixed by the frame, the probability of observing a plaxium negative example is

P(d|h) = 1 � f(x)

Robustness and model complexity

As mentioned earlier, parameter estimation was done by hand rather than via an
explicit optimization procedure. Visual inspection of the curves during the parameter
tuning process suggested that the theoretically important qualitative trends in the data
were almost always reproduced by the model regardless of the parameter values chosen.
To substantiate this intuition a little more quantitatively, we undertook a model evalua-
tion procedure that is a hybrid of the parametric bootstrap (see Wagenmakers, Ratcliff,
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Gomez & Iverson, 2004), landscaping (Navarro, Pitt & Myung 2004), and parameter space
partitioning (Pitt, Kim, Navarro & Myung, 2006). We sampled 1000 parameter values ran-
domly from fairly diffuse, quasi-informed prior distributions centred on the best fitting
parameter values, and for each parameter set determined whether the theoretically rele-
vant effect is reproduced by the model. For s, t, r and a we sampled from an exponential
distribution with mean centred on the parameters reported in the text; µ was drawn from
a standard normal; and for the base rate manipulations the value of a for the rare and
common categories were multiplied (or divided) by scaling factors sampled uniformly
from 1 to 100. We evaluated 14 qualitative contrasts evaluated. Unless otherwise stated,
the expected base rate of success by chance is 50%.

• Experiment 1: Overall generalization decreases when explicit negative evidence is
added – found in 998 of 1000 cases

• Experiment 1: Overall generalization is lower in property than category sampling –
found in 967 of 1000 cases

• Experiment 1: The difference between category and property is attenuated when
negative evidence is added – found in 994 of 1000 cases.

• Experiment 2: Under category sampling, sample size increase shifts generalization
upwards overall – found in 989 of 1000 cases (against chance base rate: 16.7%)

• Experiment 2: Under category sampling, the upward shift is larger for target cate-
gories than dissimilar categories – found in 977 of 1000 cases (against chance base
rate: 16.7%)

• Experiment 2: Under property sampling, sample size increase shifts generalization
upwards for target categories – found in 593 of 1000 cases (against chance base rate:
16.7%)

• Experiment 2: Under property sampling, sample size increase shifts generalization
downwards for dissimilar categories – – found in 759 of 1000 cases (against chance
base rate: 16.7%)

• Experiment 2: Overall generalization is lower in property than category sampling –
found 997 of 1000 cases

• Experiment 4: Overall generalization is lower in property than category sampling –
found 1000 of 1000 cases

• Experiment 4: Under property sampling, shifting base rate of C- from rare to com-
mon increases endorsement of C+ – found 660 of 1000 cases

• Experiment 4: Under property sampling, shifting base rate of C- from rare to com-
mon dcreases endorsement of C- – found 930 of 1000 cases
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• Experiment 4: Under category sampling, shifting base rate of C- from rare to com-
mon increases endorsement of C+ – found 496 of 1000 cases

• Experiment 4: Under category sampling, shifting base rate of C- from rare to com-
mon dcreases endorsement of C- – found in 477 of 1000 cases

• Experiment 4: The magnitude of the base rate by sampling crossover effect is smaller
in category sampling than property sampling – found in 940 of 1000 cases

As this makes clear, the many successes of the model (almost all of the effects listed
above) and the occasional failures (e.g., inability to produce an attenuated (rather than
null) base rate effect in category sampling are generic predictions of the model. Indeed, in
most cases it is almost impossible for the model to make any prediction other than what
we found in the data. In short, it seems unlikely that the strong performance of the model
is an artifact of model complexity.


